Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, May 23, 2019
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Tensor decompositions and machine learning

Ivan Oseledets
Skolkovo Institute of Science and Technology

In this talk I will discuss several SVD-based tensor decompositions (like tensor train), related algorithm and outline several recent works that connect tensor decomposition and machine learning. In short, tensor decompositions (and in general, factorization methods) can be very efficient in machine learning for different tasks, for the compression of neural networks, for the neural architectures, and also for the design of new machine learning models.

Host: Ben Nebgen