Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, September 16, 2019
10:30 AM - 11:30 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Probabilistic Programming and Artificial Intelligence

Vikash Mansinghka
MIT

Probabilistic programming is an emerging field at the intersection of programming languages, probability theory, and artificial intelligence. This talk will show how to use recently developed probabilistic programming languages to build systems for robust 3D computer vision, without requiring any labeled training data; for automatic modeling of complex real-world time series; and for machine-assisted analysis of experimental data that is too small and/or messy for standard approaches from machine learning and statistics.This talk will use these applications to illustrate recent technical innovations in probabilistic programming that formalize and unify modeling approaches from multiple eras of AI, including generative models, neural networks, symbolic programs, causal Bayesian networks, and hierarchical Bayesian modeling. Specifically, it will present languages in which models are represented using executable code, and in which inference is programmable using novel constructs for Monte Carlo, optimization-based, and neural inference. It will also present techniques for Bayesian learning of probabilistic program structure and parameters from real-world data. Finally, this talk will review challenges and research opportunities in the development and use of general-purpose probabilistic programming languages that performant enough and flexible enough for real-world AI engineering. **This seminar is part of a series on Artificial Intelligence for Computational Science.

Host: Aric Hagberg