Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, September 16, 2019
3:30 PM - 4:15 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Combining symbolic and numeric AI for modeling: Intelligent formal methods for complex model stacks

Eric Mjolsness
University of California, Irvine

Progress in modeling complex, heterogeneous, spatially distributed, multiscale biological systems is being made by applying both machine learning methods (numerical AI - Artificial Intelligence) and declarative mathematical modeling languages including computer algebra (symbolic AI). I will use as examples reaction/diffusion networks relevant to modeling synapses during learning, and current work on cell-scale microtubule networks in plant development. Technical tools include “dynamic Boltzmann distributions” for model reduction by machine learning, and “dynamical graph grammars” for modeling evolving, spatially embedded structures. I will then attempt to set the stage for further discussions on AI for Computational Science by considering formal representations of computable scientific models and their stackable, conditionally valid reduction mappings, within a conceptual architecture for accumulating and applying computer-represented knowledge of the relevant applied mathematics.**This seminar is part of a series on Artificial Intelligence for Computational Science.

Host: Aric Hagberg