Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, May 24, 2022
1:00 PM - 2:00 PM
CNLS conference room (03-1690-102)

Seminar

Standard, One-Bit, and Saturated Compressive Sensing

Simon Foucart
Dept. of Mathematics, Texas A&M University

The theory of sparse recovery from compressive measurements relies predominantly on the so-called restricted isometry property. In this talk, I shall summarize recent results based on an appropriate modification of this property. Firstly, I will show how exact recovery of sparse vectors can still be achieved from standard linear measurements. Secondly, I will give a simple explanation for the possibility of approximate recovery when these measurements are quantized to the extreme. Thirdly, I will discuss an intermediate situation where large measurements saturate. I will finally mention analogous results dealing with the recovery of low-rank matrices rather than sparse vectors.

Host: Nick Hengartner