Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, July 14, 2022
1:00 PM - 2:00 PM
CNLS Conference Room 03-1690 & WebEx

Seminar

PIML talk series I: Relaxed Equivariant Neural Networks for Learning Spatiotemporal Dynamics

Robin Walters, Postdoctoral Research Fellow
Khoury College Computer Sciences, Northeastern University

Applications such as climate science and transportation require learning complex dynamics from large-scale spatiotemporal data. Existing machine learning frameworks are still insufficient to learn spatiotemporal dynamics as they often fail to exploit the underlying physics principles. Representation theory can be used to describe and exploit the symmetry of the dynamical system. We will show how to design neural networks that are equivariant to various symmetries for learning spatiotemporal dynamics. Our methods demonstrate significant improvement in prediction accuracy, generalization, and sample efficiency in forecasting turbulent flows and predicting real-world trajectories. This is joint work with Rose Yu, Rui Wang, and Jinxi Li.

Host: Wenting Li (T-5), Arvind Mohan (CCS-2)