Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, July 13, 2022
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Learning Binary Code Representations for Security Applications

Heng Yin
University of California

Learning a numeric representation (also known as an embedded vector, or simply embedding)for a piece of binary code (an instruction, a basic block, a function, or even an entire program) has many important security applications, ranging from vulnerability search, plagiarism detection, to malware classification. By reducing a binary code with complex control-flow and data-flow dependencies into a numeric vector using deep learning techniques, we convert complex binarycode detection and search problems into the search of embeddings, which can be done in O(1)time and often can achieve even higher accuracy than traditional methods. In this talk, I amgoing to show how we can revolutionize several security applications using this approach,including vulnerability search, malware variant detection, and binary diffing.

Host: Diego Ray Chavez