Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, August 23, 2022
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Diffusion Models for Inverse Problems in Imaging

Hyungjin Chung
Korea Advanced Institute of Science and Technology & T-5

Diffusion model is a new powerful class of generative model that can synthesize data from noise by modeling the gradient of the log data density (i.e. score function). The resulting generative process resembles sequential denoising from pure noise, and is governed by a simple form of stochastic differential equation (SDE). One can also use diffusion model beyond simple data generation. Specifically, when we have partial observation to the image that we wish to visualize, we can directly utilize the diffusion model as a prior, and iterate data consistency steps to sample from the posterior distribution. I will focus on how inverse problem solving with diffusion models can be performed, and the advantages of such method, giving diverse results ranging from CS-MRI, CT, and computer vision. I will also cover advanced strategies to accelerate diffusion models, and future prospectives.

Host: Hyun Lim (CCS-2) and Marc Klasky (T-5)