Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, January 10, 2023
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Machine learning motivated approach applied to discover dynamical phase transitions and quantum resonances

George P. Tsironis
School of Engineering and Applied Sciences, Harvard University and Department of Physics, University of Crete, Greece

In this work we investigate dynamical phase transitions and resonances in non-linear systems described by the Discrete Non-Linear Schrödinger (DNLS) equation. We generalize the physics-informed machine learning (PIML) method proposed in Refs [1, 2] that successfully finds the parameters for the targeted energy transfer (TET) [1] of an electron (or exciton) to a target state and the parameters for the self-trapping (ST) [2] transition in a nonlinear dimer for the case of the quantized DNLS [3]. We define a data-free loss function that measures the stability of the system. For given values of the transition matrix element V, and of the nonlinearity parameter χ, of the system, we minimize the loss function and find resonant transfer as a function of boson number N. We discuss the efficiency of the transfer as a function of N.

[1] G. D. Barmparis and G. P. Tsironis, “Discovering nonlinear resonances through physics-informed machine learning,” J. Opt. Soc. Am. B, 38, C120-C126 (2021).

[2] G. P. Tsironis, G. D. Barmparis, D. K. Campbell, “Dynamical symmetry breaking through AI: The dimer self-trapping transition”, Int. J. Mod. Phys. B, 2240001, (2021).

[3] I. Andronis et al., Quantum targeted energy transfer through machine learning tools, arXiv:2212.00556

Host: Avadh Saxena