Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, July 19, 2005
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Randomized Optimization using Probability Collectives

Dev Rajnarayan
Stanford University

Probability Collectives is a set of optimization methods that arose from recognizing connections between game theory, machine learning, statistical physics, and randomized optimization algorithms. These methods target large scale optimization problems involving categorical variables, and convert them to continuous problems over smaller spaces. This is done by considering expectations over appropriate probability distributions. By suitable specification of these distributions, various aspects of particular problems can be incorporated, like the structure of dependencies, decentralization, prior knowledge, etc. In the end, these methods yield probability distributions over solutions. They are easily implemented in an adaptive, decentralized framework, so that the resulting solutions represent good decentralized, adaptive, stochastic strategies, rather than fixed optimal solutions. The talk will introduce the algorithm, discuss some implementation details, and demonstrate some examples.