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We compute for the first time full elastic deformations, as well as length, of self-trapped electronic
states in carbon nanotubes of general radius and chirality, within the unifying framework of a
recently introduced two field model for electromechanics of carbon nano-structures. We find that
deformations are highly non monotonic in the chiral angle, whereas the length of the polaron is not.
Applications include nano-mechanical devices as electrically or optically driven nano-actuators.
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Coupling between electronic and elastic structure of
carbon nanotubes [1–3] leads to theoretically interesting
and technologically relevant phenomena: among other
things, gap opening can be induced via strain [4, 5] (al-
lowing mechanical control of the conductance) and inject-
ing electron/holes induces mechanical deformations [6, 7]
(important for realization of electrical nano-actuators) or
shifts in Raman phonon modes [8–10]. Novel excitations
leading to spontaneous distortions driven by electron-
phonon couplings are of particular interest to the elec-
tromechanics of nano devices [11, 12]. In particular
light induced mechanical deformations, or optomechani-
cal effects can be observed at high temperatures in nan-
otube, as excitons are more strongly bound [13]. Re-
cently, Verissimo-Alves et al [14] have predicted the exis-
tence of self-trapped electron and hole states in semicon-
ducting carbon nanotubes by feeding parameters from ab
initio density functional calculations into a very simpli-
fied continuum model. They obtained polaron lengths of
the order of 40-60 nm and energies of order of 10−2 meV.
Their long polaron approximation is confirmed by a re-
cent atomistic numerical analysis: Bratek et al [15] found
that the azimuthal dependence becomes relevant only at
very high electron-phonon couplings, for which the long
polaron approximation fails, and the electron localizes
on a few unit cells. For actual carbon nanotubes, they
found that the self-trapped electronic states resemble the
nonlinear long Schrödinger soliton which Verissimo-Alves
employed as a model.

It is important, both theoretically and technologically,
to be able to predict exactly which kind of deformations
can be induced by these kind of excitations, and in the
general case. Yet, the Verissimo-Alves simplified con-
tinuum model cannot address the complex deformations
in carbon nanotubes: it completely ignores chirality de-
pendence and neglects to account for torsional deforma-
tions or inner displacements. Indeed traditional analyti-
cal continuum approaches employed in the treatment of
carbon nanotubes [1, 2, 16, 17] cannot describe atom-
istic structure without ad hoc phenomenological exten-
sions [7, 18, 19]. On the other hand, more complete
treatments based on atomistic models are too complex

to be solved analytically or to return detailed answers
for a general case: Bratek et al for instance only address
polarons in zigzag nanotubes.

In this letter we employ a recently introduced bicon-
tinuum model to solve this predicament and calculate the
full range of deformations induced by self-trapped elec-
trons/holes for the general carbon nanotube.

In a recent work, Nisoli et al [20] have introduced a two
field unifying framework for elasticity, lattice dynamics
and electromechanical coupling in carbon nanostructures
that accounts for the full atomistic detail of the graphenic
lattice, and explains a wealth of experimental and nu-
merical results without computationally intensive atom-
istic treatments. They defined an elastic field for each of
the mutually interlaced triangular sublattices that make
the honeycomb lattice, ui(x), vi(x), i = 1, 2 (see Fig. 1)
and the corresponding strain tensors [21] uij = ∂(iuj),
vij = ∂(jvi), and wrote the elastic energy via considera-
tions of symmetry. Unlike Ref. [20], we work here with
the average displacement 2pi = (ui + vi), inner displace-
ment 2qi = (ui − vi), and corresponding strain tensors
pij , qij . In these new variables, the elastic energy of
Ref. [20] becomes Wel =

∫
σ Vel[p, q] dx2, with

Vel[p, q] = µ̂ pijpij +
λ̂

2
piip

j
j

+
1
2
ω2

Γ q
2 − 2β eijkqipjk, (1)

where we have employed the long polaron approximation
to neglect the dispersion of the optical branches [26]. The
tensor eijk is invariant under the C3v group and can be
represented by the three unit vectors {ê(l)}l=1,3 of Fig. 1,

eijk =
4
3

3∑
l=1
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There are thus 4 parameters: ωΓ, the graphite-like op-
tical frequency; β which determines the strength of the
rotational symmetry breaking, contains all information
about the point group symmetry of graphene, and de-
fines the important length ` ≡ 4β/ω2

Γ = 0.3 [20]; and the
generalized Lamè symbols µ̂, λ̂, which can be expressed
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in terms of the longitudinal and transverse speed of sound
in graphene, v2

L = 2µ̂+λ̂−4β2/ω2
Γ, v2

T = µ̂−4β2/ω2
Γ, and

are related to the actual Lamè symbols of graphene µr,
λr via µr = µ̂− 4β2/ω2

Γ and λr = λ̂+ 4β2/ω2
Γ. We then

write p in term of the isotropic (γo), anisotropic (γ), and
shear/torsional (η) strain in the nanotube coordinates pφφ = γo + γ

pzz = γo − γ
pφz = pzφ = η

. (3)

In these new variables the elastic energy (1) now reads

Vel = 2λ̂ γ2
o + 2µ̂

(
γ2
o + γ2 + η2

)
+

1
2
ω2

Γ q
2

− 4β qφ (γs3 − ηc3) + 4β qz (γc3 + ηs3) . (4)

(We have shortened c3 ≡ cos(3θc), s3 ≡ sin(3θc), θc is the
chiral angle of the nanotube, and used eφ,φ,φ = −eφ,z,z =
−s3, and ez,z,z = −eφ,φ,z = −c3.)

As explained in Ref. [20], one can simply “wrap
around” the elastic energy of graphene to deal with car-
bon nanotubes. In the cylindrical geometry, with coor-
dinates {r, φ, z} of Fig. 1, a minimal coupling between
the tangential displacements pi and the radial pr ap-
pears in Vel of (1) via pφφ =

(
∂φp

φ + pr
)
/r [21]. As ex-

plained, we assume no azimuthal dependence, and thus
2γo = (∂zpz + pr/r), 2γ = (−∂zpz + pr/r), 2η = ∂zpφ.
We are neglecting the breaking of the hexagonal sym-
metry brought upon by the chiral vector that defines the
wrapping of the carbon nanotube. This symmetry break-
ing allows for new terms to be introduced in Vel as cur-
vature corrections. The parameters of our elastic energy
for graphene are also corrected by curvature.

As for the low energy electronic excitations in a semi-
conducting nanotube, they can be described in terms of
an envelope wave-function ψ [22] of energy density

Ee[ψ, p, q] = −ψ† ~
2∂2
z

2m
ψ + Eep[ψ, p, q]. (5)

Eep, the coupling between phonons and an injected elec-
tron or hole, at lowest order both in the in-plane elastic
fields and in the electron probability density |ψ|2 can be
deduced via considerations of symmetry

Eep = |ψ|2 [ν (qz/e+ γc3 + ηs3) + ν′γo] (6)

(e is the bond length). Physically, the term proportional
to ν emerges in dielectric tubes from a deformation-
induced change in the bandgap, whereas the term propor-
tional to ν′ comes from the shift in energy at the K point
of the Brillouin due to second-nearest-neighbor atoms [6].
In the context of a simple tight-binding treatment [2],
hopping integrals are modulated by in-plane elastic de-
formations. [20]: dt(l) = −τ ê(l)

i ê
(l)
j p

ij + τ ê
(l)
i q

i/e are the
three nearest-neighbor hopping integrals along the three
bonds of unit vectors ê(l), whereas dt′(l) = −τ ′ â(l)

i â
(l)
j p

ij

FIG. 1: The two sublattices (circles and squares) of graphene

and the three unit vectors ê(l) used in the text. φ, z are
cylindrical coordinates of a tube, while Ψ = π/6− θc with θc
the chiral angle.

are the hopping integrals along the three directions â(l) of
the next-nearest-neighbors. (τ , τ ′ are often called scaling
parameters [23].) Following along the line of Ref. [5, 20],
one can calculate the variation of the band gap and of
the energy at the K point under strain via hopping in-
tegral modulation, and—after long yet not particularly
insightful calculations—deduce (6) and in particular{

ν′ = ∓3τ ′

ν = 3
2spτ.

(7)

The minus sign in the first equation is for electrons, the
plus for holes. Note that there is no change in sign for ν
in going from holes to electrons. The other sign function
is s1 = −1 (s2 = 1) where p is defined as a function of n,
m as p ≡ [(n−m) mod 3]. This difference in sign behav-
ior between ν and ν′ was previously recognized as causing
indices dependence and non monotonicity in the doping
induced shift of Raman frequencies and anomalous bond
contraction/expansion in zig-zag nanotubes [8–10, 20].
We will see that it controls chirality dependent expan-
sions vs. contractions for hole or electron self-trapping.

We assume that our fields only vary along the axial co-
ordinate z, an ansatz corroborated by previous numerical
calculations, as explained above [15]. This treatment—
we will see—is self consistent as it predicts very long
polarons. The hamiltonian density for the entire system
is then

H = −ψ† ~
2∂2
z

2m
ψ + σcVel + Eep (8)

where Vel is given by (4), Eep is given by (6), and c =
2πr is the nanotube circumference. Minimization under
normalization of ψ with Lagrangia multiplier εp returns
the system of equations of equilibrium for our system,

4(µ̂+ λ̂) γo = −ν′|ψ|2/σc
4µ̂ γ − 4β(qφs3 − qzc3) = −νc3|ψ|2/σc
4µ̂ η + 4β(qφc3 + qzs3) = −νs3|ψ|2/σc
4β(γc3 + ηs3) + ω2

Γqz = −ν|ψ|2/eσc
4β(γs3 − ηc3)− ω2

Γqφ = 0
εpψ = −~2

2m ∂2
zψ + [ν (qz/e+ γc3 + ηs3) + ν′γo]ψ

(9)



3

which is linear in the elastic fields and can be solved easily
for them in terms of |ψ|2.

We find for the local deformation induced by an in-
jected electron or hole the equations γo = ±ξo |ψ|2

γ = −sp ξ cos(3θc)|ψ|2
η = −sp ξ sin(3θc)|ψ|2

, (10)

which show that strain is higher in regions where the
electron is localized. The sign in the first equation is
plus for electrons and minus for holes. The other two
equations change sign depending on the chirality of the
nanotube via sp. The lengths ξo, ξ read{

ξo = 3τ ′

4 σc (v2L−v2T)

ξ = 3τ(1+l/e)
8 σc v2T

(11)

and are inversely proportional to the circumference.
From (3) we have for the total elongation and torsion

of the tube ∆L =
∫

(γo − γ) dz and r∆φ =
∫
η dz, and

thus from (10) and because of normalization of ψ, we
obtain {

∆L = ±ξo + sp ξ cos(3θc)
r∆φ = −sp ξ sin(3θc)

(12)

where, repetita juvant, the sign in the first equation is
plus for electrons and minus for holes. Note that the
overall elongation and torsion of the tube due to elec-
tron/hole injection is independent of the actual shape
of ψ. Unfortunately, that also implies that self-trapped
electronic excitations cannot be recognized by global ob-
servations such has overall elongation, but solely via local
mechanical features.

Equations (12) generalize to arbitrary chirality what
already found by Nisoli et al for doping of zig-zag nan-
otubes [20]. The first result from (12) is that elec-
tron/hole injection induces no torsion for zig-zag nan-
otubes (which correspond to m = 0, thus θc = 0), at
least in our approximation that neglects curvature cor-
rections. On the other hand, torsion would be maximum
for tubes approaching the armchair configuration (the
armchair themselves are metallic and thus excluded from
this study): that would be n = m + 1. Again from (12)
we obtain that elongation is always positive for electrons
in nanotubes with p = 2, whereas is always negative for
holes in nanotubes with p = 1. The maximum in both
cases is achieved by zig-zag nanotubes (θc = 0). These
results are in agreement with the density functional study
of Ref. [14], who found elongation for electrons in (11,0)
zig-zag, and contraction for holes in (7,0) zig-zag.

Analysis of the general case requires knowledge of the
quantities ξo, ξ. If ξ > ξo, the first equation of (12) tells
as that chirality can change the sign of ∆L sp and thus
predicts shortening for self trapped electrons, yet elon-
gation for holes, in certain tubes. This seems to be the

case, from a rough estimate: we use e = 1.42 Å and the
Harrison scaling for the hopping parameters [23], which
are τ ′ = 2t′, τ = 2t, with t ' 2.8 eV, t′ ' 0.68 eV [24].
For the speeds of sound in graphene we use vT = 1.4 104

m s−1, vL = 2.16 104 m s−1 as in Mahan [16]; finally from
the density of graphite 2.26 gm cm−3 and the interlayer
distance at 3.4 Å the surface density of graphene can be
estimated σ ' 7.6 10−7Kg m−2. We obtain ξo ' 2.510−2

Å2/2r, ξ ' 8.7 10−2 Å2/2r. For a larger nanotube of
1 nm in diameter, 103 electrons can give a 1nm elon-
gation. Since the elongation and torsion are inversely
proportional to the radius of the nanotube: these effects
become stronger for small radii, for which our treatment
is only a first order approximation.

From (9) we find that the inner displacement{
qφ = 0
qz = −sp ξ (l + l′) |ψ|2 (13)

with l′ = 4v2
T/ω

2
Γ(e+ l) ' 0.35 Å (computed from

vT = 1.4 104 ms−1 and ωΓ = 3 1014 s−1). Thus, the in-
ner displacement is always parallel to the nanotube axis,
while its absolute magnitude is independent of the chi-
ral angle. On the other hand, its orientation depends
on the chiral indices, thus suggesting that polarons can
induce highly non monotonic anomalous bond contrac-
tions/expansion and thus hardening/softening of optical
modes [8–10, 20].

Finally, by substituting the expression for the elastic
fields (10, 13) into the last equation of (9), one finds a
nonlinear Schröedinger equation for the envelope ψ

εpψ = − ~2

2m
(
∂2
zψ + 4χ|ψ|2ψ

)
(14)

where the reciprocal length χ is found to be

χe =
π

4σc2t

[
τ2(e+ l)(e+ l + l′)

v2
Te

2
+

τ ′2

4(µ̂+ λ̂)

]
(15)

where we have used the expression m = 2π~2/(9ect) for
the effective mass of the electron obtained from the for-
mula for the band gap [2]. The well known self-bound
solution of (14)

ψ(z, t) =
√
χ

2
cosh−1(χz)e−iεpt/~ (16)

corresponds to a polaron of energy εp = −~2χ2

2m and length
a = χ−1. Remarkably unlike the amplitude of the elas-
tic deformations, the length and thus the energy of the
polaron does not depend on the chiral angle. Also po-
laron length is the same for electrons and holes. This
latter statement is in contrast with results reported by
Verissimo-Alves [14]: while for the (11,0) nanotube they
find about the same polaron length for electron (39 nm)
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and hole (40 nm), for the (7,0) case the electron polaron
has a length of 59 nm, while the hole is 21 nm long.
The polaron length a = χ−1 can be estimated from (15)
to be of several hundred angstroms for nanotubes of a
few nanometers in diameter, in agreement with estimate
based on DFT results [14].

Finally, for completeness, we calculate the radial vari-
ation of the nanotube ∆r/r = pφφ. From (10) and (16)
we see that the maximum radial variation corresponds to
the maximum of ψ (at z = 0) or

∆r
r

= ± ξo
2a
− sp

ξ

2a
cos(3θc), (17)

positive sign for electrons, negative for holes. There is al-
ways a radial shrinking in correspondence of self-trapped
holes in nanotubes with p = 2, and radial expansion for
electrons in nanotubes with p = 1, as partially confirmed
by density functional findings of Ref. [14].

While the casuistic of excitons is too rich to be dealt
with here [13], we can still offer a few considerations for
the E11 case. As couplings of electron and holes with
anisotropic deformations γo cancel each other, we must
take ν′ = 0 and thus ξo = 0 in our equations. Hence,
we can have optomechanical effects of both elongation or
contraction, depending on the chiral indices, as predicted
by (12) with ξo = 0.

The treatment above applies to static polarons in not
too small nanotubes, as we neglect the breaking of hon-
eycomb symmetry brought up by the chiral vector. That
would introduce new terms in the elastic energy and re-
sult in curvature corrections for very small radii [20].
Also, for small radii, orbital hybridization imposes a more
sophisticate tight binding treatment. For the propagat-
ing polaron, another symmetry breaking comes from the
velocity vector, directed along the nanotube axis. Even
for large nanotubes, we expects corrections (at lowest or-
der quadratic) in the speed of the traveling polaron. [25].

In conclusion, we have calculated the elastic defor-
mations and electronic structure of self-trapped elec-
tronic states in single wall carbon nanotubes. We found
that elongation and torsion depend on the chiral angle
whereas the polaron length does not. The inner dis-
placement is always axial and changes orientation de-
pending on the chiral indices: this suggests a chirality de-
pendent bond lengthening/contraction and optical mode
frequency shift. Extension of this model to excitons is
particularly interesting.

This work was carried out under the auspices of the
National Nuclear Security Administration of the U.S. De-
partment of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396.
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