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Education 2004-2009, Boston University
Ph.D. in Physics
Advisor: William Klein
Thesis: Phase Transition Kinetics in Long-Range Systems

1997–2001, Carnegie Mellon University
B.S. Computer Science, Minor in Discrete Mathematics

Professional
Experience

2014–Present, Los Alamos National Laboratory,
Staff Scientist in Physics and Chemistry of Materials, Theoretical Division

2010–2014, Los Alamos National Laboratory,
Postdoc. in CNLS and Theoretical Division
Organizer of the CNLS postdoc. seminar
Mentors: Turab Lookman, Timothy Germann, and Cristian D. Batista

2010, Northwestern University, Evanston, IL
Postdoc. in the Departments of Materials Science and Engineering
and Applied Mathematics
Mentor: Erik Luijten

2007 Summer, NIST, Gaithersburg, MD
NSF IGERT funded visitor in the Polymers Division
Mentor: Jack Douglas

2004, Clark University, Worcester, MA
Visitor in the Department of Physics
Helped write An Introduction to Computer Simulation Methods, 3rd ed.
Mentor: Harvey Gould

2001–2002, Green Hills Software, Santa Barbara, CA
Software engineer, compiler development and back-end optimization

1999–2000, Los Alamos National Laboratory
Student researcher in the Physics Division, algorithms for confocal microscopy
Mentor: John George

Service Executive committee member for the Center for Nonlinear Studies (2015–Present)
LANL LDRD review panel (2017, 2018, 2021, 2022)
NSF review panel (2020)
BES review panel (2020)

Awards Graduate Book Prize, 2009, Boston University
GSNP Student Speaker Award, $1000 prize, 2009, APS March Meeting
NSF IGERT Fellowship, 2006–2008, Center for Computational Science,
Boston University
Chairman’s Book Prize, 2007, Boston University
Dean’s Fellow, 2005–2006, Boston University
Presidential Scholarship, 1997–2001, Carnegie Mellon University

http://cnls.lanl.gov/~kbarros


Computational
Skills

Algorithm design, numerical analysis, machine learning, high performance and GPU
computing.

Open Source
Code
Contributions

Sunny, A general-purpose library for performing generalized SU(N) classical spin sim-
ulations..
https://github.com/SunnySuite/Sunny.jl/

ElPhDynamics, Linear-scaling simulations for quantum models of electron-phonon
interactions.
https://github.com/cohensbw/ElPhDynamics/

FastKPM, Linear-scaling electronic structure solver, GPU accelerated and MPI dis-
tributed.
https://github.com/kbarros/FastKPM

Kondo, Code to enable large-scale simulations of the Kondo lattice model.
https://github.com/kbarros/Kondo

ExMatEx project, Proxy-apps for multi-scale simulation on future exascale comput-
ers.
http://www.exmatex.org/

QUDA, Widely used GPU-based lattice quantum chromodynamics accelerator.
http://lattice.github.com/quda/

STP project, Interactive simulations to teach statistical and thermal physics.
http://stp.clarku.edu/simulations

Project
leadership

PI, Data science driven quantum chemistry for reactive chemistry controlled by stimuli,
BES, DE-FOA-0002474,
$800k/year (2022, 2023, 2024).

Co-PI, Artificial intelligence and data science enabled predictive modeling of collective
phenomena in strongly correlated quantum materials , BES, DE-FOA-0002474,
$700k/year (2022, 2023, 2024).

PI, Sampling the unknown: Robust modeling of atomic potentials, LDRD-20200209ER,
$309k/year (2020, 2021, 2022).

Machine learning lead, Enabling Predictive Scale-Bridging Simulations through Active
Learning, LDRD-20190005DR,
$1.6M/year (2019, 2020, 2021).

Co-PI, Critical Stress in Earth Crust, LDRD-20170004DR,
$1.6M/year (2017, 2018, 2019).

PI, Quantum Molecular Dynamics of Strongly Correlated Materials, LDRD-20170450ER,
$320k/year (2017, 2018, 2019).

PI, Efficient Method for Large Scale Simulations of Fermionic Gases Interacting with
Classical Fields, LDRD-20140458ER,
$320k/year (2014, 2015, 2016).

Co-organized
workshops

Los Alamos–Arizona Days, Los Alamos, NM, May 16–17 (2022).

Machine Learning in Chemical and Materials Sciences, Virtual, May 23–26
(2022).

2nd Machine Learning in Solid Earth Geoscience, Santa Fe, NM, Mar. 18–22
(2019).

https://github.com/SunnySuite/Sunny.jl/
https://github.com/cohensbw/ElPhDynamics/
https://github.com/kbarros/FastKPM
https://github.com/kbarros/Kondo
http://www.exmatex.org/
http://lattice.github.com/quda/
http://stp.clarku.edu/simulations


Machine Learning and Informatics for Chemistry and Materials, Telluride,
CO, Oct. 1–5 (2018).

Machine Learning in Solid Earth Geoscience, Santa Fe, NM, Feb. 20–22 (2018).

2nd Physics Informed Machine Learning, Santa Fe, NM, Jan. 21–25 (2018).

State of Stress in the Earth, Santa Fe, NM, Oct. 19–21 (2016).

Physics Informed Machine Learning, Santa Fe, NM, Jan. 19–22 (2016).

Manuscripts 63. N. Fedik, R. Zubatyuk, M. Kulichenko, N. Lubbers, J. S. Smith, B. Nebgen, R.
Messerly, Y. W. Li, A. I. Boldyrev, K. Barros, O. Isayev, S. Tretiak, Machine
Learning for Molecular Properties: Going Beyond Interatomic Potentials (submitted
to Nature Rev. Chem.).

62. B. Cohen-Stead, O. Bradley, C. Miles, G. Batrouni, R. Scalettar, K. Barros, Fast and
scalable quantum Monte Carlo simulations of electron-phonon models (submitted to
PRE) [arXiv:2203.01291].

61. C. Miles, B. Cohen-Stead, O. Bradley, S. Johnston, R. Scalettar, K. Barros, Dy-
namical tuning of the chemical potential to achieve a target particle number in grand
canonical Monte Carlo simulations (submitted to PRE) [arXiv:2201.01296].

60. G. Zhou, N. Lubber, K. Barros, S. Tretiak, and B. Nebgen, Deep Learning of Dynam-
ically Responsive Chemical Hamiltonians with Semi-Empirical Quantum Mechanics
(submitted to PNAS).

59. D. Rosenberger, K. Barros, T. C. Germann, N. Lubbers, Machine Learning of
consistent thermodynamic models using automatic differentiation Accepted to PRE
[arXiv:2108.04904].

58. C. Miles, M. R. Carbone, E. J. Sturm, D. Lu, A. Weichselbaum, K. Barros, R.
M. Konik, Machine learning of Kondo physics using variational autoencoders and
symbolic regression, Phys. Rev. B 104, 235111 (2021) [arXiv:2107.08013].

57. J. Finkelstein, J. Smith, S. M. Mniszewski, K. Barros, C. F. A. Negre, E. H. Rubens-
son, A. M. N. Niklasson, Quantum-based Molecular Dynamics Simulations using
Tensor Cores, J. Chem. Theory Comput. 17, 6180 (2021) [arXiv:2107.02737].

56. A. E. Sifain, L. Lystrom, R. A. Messerly, J. S. Smith, B. Nebgen, K. Barros, S. Tre-
tiak, N. Lubbers, B. J. Gifford, Predicting Phosphorescence Energies and Inferring
Wavefunction Localization with Machine Learning,
Chem. Science (2021) [ChemRxiv:14099696].

55. M. Kulichenko, J. S. Smith, B. Nebgen, Y. W. Li, N. Fedik, A. Boldyrev, N. Lubbers,
K. Barros, S. Tretiak The Rise of Neural Networks for Materials and Chemical
Dynamics,
J. Phys. Chem. Lett. 12, 6227–6243 (2021)

54. T. Zubatyuk et al., Machine Learned Hückel Theory: Interfacing Physics and Deep
Neural Networks,
J. Chem. Phys. 154, 244108 (2021) [arXiv:1909.12963].

53. J. Finkelstein, J. S. Smith, S. M. Mniszewski, K. Barros, C. F. A. Negre, E. H.
Rubensson, A. M. N. Niklasson, Mixed Precision Fermi-Operator Expansion on Ten-
sor Cores From a Machine Learning Perspective,
J. Chem. Theory Comput. 17, 2256-2265 (2021) [arXiv:2101.06385]

52. G. Paleari, F. Hébert, B. Cohen-Stead, K. Barros, R. T. Scalettar, G. G. Batrouni,
Quantum Monte Carlo study of an anharmonic Holstein model,
Phys. Rev. B, 103, 195117 (2021) [arXiv:2101.08285].



51. M. Lupo Pasini, Y. W. Li, J. Yin, J. Zhang, K. Barros, M. Eisenbach, Fast and
stable deep-learning predictions of material properties for solid solution alloys,
J. Phys.: Condens. Matter 33, 084005 (2021).

50. J. S. Smith et al., Automated discovery of a robust interatomic potential for alu-
minum,
Nat. Commun. 12, 1257 (2021) [arXiv:2003.04934].

49. M. Shahzad, K. Barros, S. H. Curnoe, Phase Diagram of a Spin-ice Kondo Lattice
Model in the Breathing Pyrochlore Lattice,
Phys. Rev. B 102, 144436 (2020). [arXiv:2007.15577]

48. J. S. Smith, N. Lubbers, A. P. Thompson, K. Barros, Simple and efficient algorithms
for training machine learning potentials to force data,
Open access at arXiv, [arXiv:2006.05475]

47. G. Craven, N. Lubbers, K. Barros, Sergei Tretiak, Machine learning approaches for
structural and thermodynamic properties of a Lennard-Jones fluid,
J. Chem. Phys. 153, 104502 (2020)

46. A. Diaw, K. Barros, J. Haack, et al., Multiscale simulation of plasma flows using
active learning,
Phys. Rev. B. 102, 023310 (2020).

45. G. T. Craven, N. Lubbers, K. Barros, S. Tretiak, Ex Machina Determination of
Structural Correlation Functions,
J. Phys. Chem. Lett. 11, 4372 (2020).

44. B. Cohen-Stead, K. Barros, Z. Y. Meng, C. Chen, R. T. Scalettar, G. G. Batrouni,
Langevin Simulations of the Half-Filled Cubic Holstein Model,
Phys. Rev. B 102, 161108R (2020) [arXiv:2005.00918].

43. C. Devereux et al., Extending the applicability of the ANI deep learning molecular
potential to Sulfur and Halogens,
J. Chem. Theory Comput. 16, 4192 (2020) [ChemRxiv:11819268].

42. J. Smith et al., The ANI-1ccx and ANI-1x data sets, coupled-cluster and density
functional theory properties for molecules,
Sci. Data 7, 134 (2020) [ChemRxiv:10050737].

41. A. Samarakoon et al., Machine Learning Assisted Insight to Spin Ice Dy2Ti2O7,
Nat. Commun. 11 892 (2020) [arXiv:1906.11275].

40. L. Hao et al., Anomalous Magnetoresistance due to Longitudinal Spin Fluctuations
in a Jeff = 1/2 Mott Semiconductor,
Nat. Commun. 10, 5301 (2019) [arXiv:1910.13611].

39. J. S. Smith et al., Approaching coupled cluster accuracy with a general-purpose neural
network potential through transfer learning,
Nat. Commun. 10, 2903 (2019) [ChemRxiv:6744440].

38. H. Suwa, J. S. Smith, N. Lubbers, C. D. Batista, G.-W. Chern, and K. Barros,
Machine learning for molecular dynamics with strongly correlated electrons,
Phys. Rev. B 99, 161107 (2019) [arXiv:1811.01914].

37. G.-W. Chern and K. Barros, Nonequilibrium dynamics of superconductivity in the
attractive Hubbard model,
Phys. Rev. B 99, 035162 (2019) [arXiv:1803.04118].

36. N. Lubbers, D. C. Bolton, J. Mohd-Yusof, C. Marone, K. Barros, and P. A. Johnson,
Earthquake catalog-based machine learning identification of laboratory fault states
and the effects of magnitude of completeness,
Geophys. Res. Lett. 45, 13269 (2018) [arXiv:1810.11539].



35. N. Lubbers, J. S. Smith, and K. Barros, Hierarchical modeling of molecular energies
using a deep neural network,
J. Chem. Phys. 148, 241715 (2018) [arXiv:1710.00017].

34. B. Nebgen, N. Lubbers, J. S. Smith, A. Sifain, A. Lokhov, O. Isayev, A. Roitberg,
K. Barros, and S. Tretiak, Transferable dynamic molecular charge prediction using
deep neural networks,
J. Chem. Theory Comput. 14, 4687 (2018) [arXiv:1803.04395].

33. Z. Wang, G.-W. Chern, C. D. Batista, and K. Barros, Gradient-based stochastic
estimation of the density matrix,
J. Chem. Phys. 148, 094107 (2018), Editor’s Pick [arXiv:1711.10570].

32. G. W. Chern, K. Barros, Z. Wang, H. Suwa, and C. D. Batista, Semiclassical dy-
namics of spin density waves,
Phys. Rev. B 97 035120 (2018), Editors’ Suggestion [arXiv:1708.08050].

31. A. E. Sifain, N. Lubbers, B. T. Nebgen, J. S. Smith, A. Y. Lokhov, O. Isayev, A. E.
Roitberg, K. Barros, and S. Tretiak Discovering a Transferable Charge Assignment
Model Using Machine Learning,
J. Phys. Chem. Lett. 9, 4495 (2018) [ChemRxiv:6638981].

30. N. Lubbers, T. Lookman, and K. Barros, Inferring low-dimensional microstructure
representations using convolutional neural networks,
Phys. Rev. E 96, 052111 (2017) [arXiv:1611.02764].

29. B. Rouet-Leduc, C. Hulbert, N. Lubbers, K. Barros, C. Humpheys, and P. A. John-
son, Machine Learning Predicts Laboratory Earthquakes,
Geophys. Res. Lett. 44, 9276 (2017) [arXiv:1702.05774].

28. R. Ozawa, S. Hayami, K. Barros, and Y. Motome, Shape of magnetic domain walls
formed by coupling to mobile charges,
Phys. Rev. B 96, 094417 (2017) [arXiv:1609.07189].
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tomatized convergence of optoelectronic simulations using active machine learning,
Appl. Phys. Lett. 111, 043506 (2017).
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in a metallic liquid – Gutzwiller molecular dynamics simulations,
Phys. Rev. Lett. 118, 226401 (2017) [arXiv:1509.05860].
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J. Chem. Phys. 146, 114107 (2017) [arXiv:1612.00193].

23. D. Wulferding et al., Domain engineering of the metastable domains in the 4f-
uniaxial-ferromagnet CeRu2Ga2B,
Sci. Rep. 7, 46296 (2017) [arXiv:1703.05228].

22. Z. Wang, K. Barros, G.-W. Chern, D. Maslov, and C. D. Batista, Resistivity Mini-
mum in Highly Frustrated Itinerant Magnets,
Phys. Rev. Lett. 117, 206601 (2016) [arXiv:1604.03620].

21. R. Ozawa, S. Hayami, K. Barros, G.-W. Chern, Y. Motome, and C. D. Batista,
Vortex Crystals with Chiral Stripes in Itinerant Magnets,
J. Phys. Soc. Jpn. 85, 103703 (2016) [arXiv:1510.06830].



20. B. Rouet-Leduc, K. Barros, T. Lookman, and C. J. Humphries, Optimisation of
GaN LEDs and the reduction of efficiency droop using active machine learning,
Sci. Rep. 6, 24862 (2016)

19. T. Lookman, P.V. Balachandran, D. Xue, G. Pilania, T. Shearman, J. Theiler, J.E.
Gubernatis, J. Hogden, K. Barros, E. Ben-Naim, and F.J. Alexander, A perspective
on materials informatics: state-of-the-art and challenges,
Information Science for Materials Discovery and Design, Springer (2016)

18. S. Taverniers, T. S. Haut, K. Barros, F. J. Alexander, and T. Lookman, Physics-
based statistical learning approach to mesoscopic model selection,
Phys. Rev. E 92, 053301 (2015).

17. D. Roehm, R. S. Pavel, K. Barros, B. Rouet-Leduc, A. L. McPherson, T. C. Ger-
mann, and C. Junghans. Distributed database Kriging for adaptive sampling,
Comput. Phys. Commun. 192, 138-147 (2015).

16. Z. Gan, H. Wu, K. Barros, Z. Xu, and E. Luijten. Comparison of efficient techniques
for the simulation of dielectric objects in electrolytes,
J. Comp. Phys. 291, 317–333 (2015).

15. K. Barros, J. W. F. Venderbos, G.-W. Chern, and C. D. Batista. Exotic magnetic
orderings in the Kagome Kondo-lattice model,
Phys. Rev. B 90, 245119 (2014) [arXiv:1407.5369].

14. S.-Z. Lin, K. Barros, E. Mun, J.-W. Kim, M. Frontzek, S. Barilo, S. V. Shiryaev, V.
S. Zapf, and C. D. Batista. Magnetic-field-induced phases in anisotropic triangular
antiferromagnets: Application to CuCrO2,
Phys. Rev. B 89, 220405 (2014) [arXiv:1404.0991].

13. B. Rouet-Leduc, K. Barros, E. Cieren, V. Elango, C. Junghans, T. Lookman, J.
Mohd-Yusof, R. S. Pavel, A. Y. Rivera, D. Roehm, A. L. McPherson, and T. C.
Germann, Spatial adaptive sampling in multiscale simulation,
Comput. Phys. Commun. 185, 1857–1864 (2014).

12. K. Barros and E. Luijten., Dielectric effects in the self-assembly of binary colloidal
aggregates,
Phys. Rev. Lett. 113, 017801 (2014) [arXiv:1406.1854].

11. K. Barros, D. Sinkovits, and E. Luijten, Efficient and accurate simulation of dynamic
dielectric objects,
J. Chem. Phys. 140, 06490 (2014) [arXiv:1401.1522].

10. K. Barros and W. Klein, Liquid to solid nucleation via onion structure droplets,
J. Chem. Phys. 139, 174505 (2013), [arXiv:1308.5244],
“A recent theoretical tour de force”—L. Gránásy and G. Tóth, Nature Physics News
& Views, 10, 12–13 (2014).

9. K. Barros and Y. Kato, Efficient Langevin simulation of coupled classical fields and
fermions,
Phys. Rev. B 88, 235101 (2013) [arXiv: 1303.1101].

8. C. R. Berardi, K. Barros, J. F. Douglas and W. Losert, Direct observation of string-
like collective motion in a two-dimensional driven granular fluid,
Phys. Rev. E 81, 041301 (2010).

7. M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi, Solving Lattice
QCD systems of equations using mixed precision solvers on GPUs,
Comput. Phys. Commun. 181, 1517 (2010) [arXiv:0911.3191].

6. K. Barros, P. Krapivsky, and S. Redner, Freezing into stripe states in two- dimen-
sional ferromagnets and crossing probabilities in critical percolation,
Phys. Rev. E 80, 040101 (2009) [arXiv:0905.3521].



5. K. Barros, R. Babich, R. Brower, M. A. Clark, and C. Rebbi, Blasting through lattice
calculations using CUDA,
PoS (Lattice 2008) 045 [arXiv:0810.5365].

4. R. Dominguez, K. Barros, and W. Klein, Early time kinetics of systems with spatial
symmetry breaking,
Phys. Rev. E 79, 41121 (2009) [arXiv:0812.3889].

3. K. Barros, R. Dominguez, and W. Klein, Beyond Cahn-Hilliard-Cook: Early time
behavior of symmetry breaking phase transition kinetics,
Phys. Rev. E 79, 042104 (2009) [arXiv:0810.3949].

2. H. Wang, K. Barros, H. Gould, and W. Klein, Approaching equilibrium and the
distribution of clusters,
Phys. Rev. E 76, 041116 (2007) [arXiv:0704.0938].

1. A. O. Schweiger, K. Barros, and W. Klein, Transient nucleation near the mean-field
spinodal,
Phys. Rev. E 75, 039902 (2007) [arXiv:0609406].

Postdoc
co-mentorship

1. Nicholas Lubbers, CNLS PD Fellow (2016–2018). Now staff scientist in the CCS-3
group, Information Sciences, LANL. (2018–)

2. Bertrand Rouet-Leduc, Director’s PD Fellow (2017–2019). Became staff scientist
in the EES-17 group, Geophysics, LANL (2019–2022). Joined faculty of Kyoto
University (2022–).

3. Justin S. Smith, Metropolis PD Fellow (2018–2020). Became a staff scientist in
the T-1 group, Physics and Chemistry of Materials, LANL (2020–2022). Joined
Nvidia as a Senior Developer Relations Manager (2022–). https://twitter.

com/gpusciguy

4. Daniel Trugman, Feynman PD Fellow (2018–2020). Joined faculty of University
of Texas Austin, Department of Geological Sciences (2020–). https://www.jsg.
utexas.edu/researcher/daniel_trugman

5. Ryan Jadrich, Metropolis PD Fellow (2019–2021). Now staff scientist in the T-1
group, Physics and Chemistry of Materials, LANL (2021–).

6. Galen Craven, Director’s PD Fellow (2019–2021). Now staff scientist in the T-1
group, Physics and Chemistry of Materials, LANL (2021–).

7. Adela Habib, Director’s PD fellow (2021–).

8. Alice Allen, CNLS PD fellow (2022–).

9. Xinyang Li, LANL PD associate (2022–).

10. Mathew Wilson, LANL PD associate (2022–).

Student
co-mentorship

1. Toby Shearman, U. Arizona (2014), Developed statistical description of mi-
crostructure samples as part of his PhD thesis.

2. Dominic Roehm, U. Stuttgart (2014), Developed database driven adaptive sam-
pling for multiscale simulation as part of his PhD thesis.

3. Bertrand Rouet-Leduc, Cambridge University (2014–2015), ML techniques for
accelerated design of LEDs.

4. Ryo Ozawa, U. Tokyo (2014–2015), KPM algorithms with applications to Skyrmion
dynamics in magnetic systems

5. Soren Taverniers, U.C. San Diego (2014–2015), ML for phase field model discovery
in nonequilibrium domain coarsening.

https://twitter.com/gpusciguy
https://twitter.com/gpusciguy
https://www.jsg.utexas.edu/researcher/daniel_trugman
https://www.jsg.utexas.edu/researcher/daniel_trugman


6. Zhentao Wang, Rice U. (2015), KPM algorithms for itinerant magnetism, and
resistivity measurement.

7. Nicholas Lubbers, Boston U. (2016), ML models for compression of synthetic
microstructure.

8. Gregoire Ferré, Ecole des Ponts ParisTech (2016), Graph-based molecular mod-
eling.

9. Rashi Verma, Boston U. (2016–2017), ML models of nucleation in atomic systems.

10. Claudia Hulbert, École Polytechnique, Paris (2016–2018), ML to model earth-
quake physics.

11. Isaac Curtis, U. Idaho (2016), ML models for phase field model discovery for
martensitic transformations.

12. Julien Roy, École Polytechnique de Montréal (2016), Deep learning for texture
completion.

13. Kishan Supreet Alguri, U. Utah (2017), ML for earthquake modeling, AML sum-
mer school. https://twitter.com/supreet_alguri

14. Carter L. Johnson, U. C. Davis (2017), ML for earthquake modeling, AML sum-
mer school. http://www.math.utah.edu/~caljohnson/

15. Justin S. Smith, U. Florida (2017–2018), ML for modeling interatomic potentials.

16. Andrew Sifain, U. Southern California (2018), ML for inferring charge partition-
ing.

17. Roman Zubatiuk, Jackson State U. (2018–2019), ML for predicting excited state
properties of molecules.

18. Austin Walsh, Wayne State University (2019–2020), Uncertainty quantification
of ML models.

19. Benjamin Cohen-Stead, UC Davis (2019–2022), Recipient of prestigious UC Fee
fellowship, developed QMC methods of electron-phonon coupling.

20. Maksim Kulichenko, Utah State (2020–2021), Developed active learning method-
ologies.

21. Aleksandra Pachalieva, T. U. Munich (2020–2021), Statistical coarse graining for
lattice Boltzmann simulation.

22. David Sanchez, Rey Juan Carlos University, Madrid (2020–2021), Uncertainty
quantification of ML models.

23. Cole Miles, Cornell U. (2020–2022), Recipient of prestigious CSGF fellowship,
numerical methods for spin dynamics simulations.

24. David Dahlbohm (2021), Geometric integration methods for spin dynamics.

25. Nikita Fedik, Utah State U. (2021), Self-consistent Coulomb interactions for ML
models.

26. Shubhang Goswami, U. Illinois (2021), Rational approximation for compact rep-
resentation of spectral functions.

27. Sakib Matin, Boston U. (2021–), Training ML models to a mixture of simulated
and experimental data.

28. Michael Chigaev, U. C. Berkeley (2021–), Covariant tensor extensions of the
HIP-NN model.

https://twitter.com/supreet_alguri
http://www.math.utah.edu/~caljohnson/

