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Abstract

The Finite State Projection

for the Solution of the Master Equation

and its Applications to Stochastic Gene Regulatory Networks

by

Brian Munsky

Doctor of Philosophy in Mechanical Engineering

University of California, Santa Barbara

Mustafa Khammash, Chair

This dissertation discusses the Finite State Projection (FSP) method for the di-

rect computational analysis of probability distributions arising from discrete state

Markov Processes. While the methods contained herein apply to a wide range

of scientific inquiries, this study focuses on the treatment of chemically reacting

biological systems. The probability distributions of such systems evolve according

to a set of linear ordinary differential equations known as the chemical master

equation (CME) or forward Kolmogorov equation. If the CME describes a system

that has a finite number of distinct configurations, then the FSP method provides

an exact analytical expression for its solution. When an infinite or extremely

large number of variations is possible, the state space is truncated, and the FSP

method provides a certificate of accuracy for how closely the FSP approximation

matches the true solution. The proposed FSP algorithm systematically increases

the projection space to meet any pre-specified error tolerance in the probability
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distribution. For any system in which a sufficiently accurate FSP solution exists,

the FSP algorithm is shown to converge in a finite number of steps. The FSP ap-

proach is enhanced by taking advantage of well-known tools from modern control

and dynamical systems theory such as minimal realizations, balanced truncation,

linear perturbation theory, and coarse gridding approaches. Each such reduction

has successfully improved the efficiency and applicability of the FSP, and more

are envisioned to be possible.

The power of the FSP is illustrated on a few important genetic regulatory

networks including a toy model of the heat shock mechanism in E. coli and a

detailed analysis of a genetic toggle switch. The FSP method is also applied to a

detailed model of the Pap pili epigenetic switch in E. coli. The Pap model predicts

the switching behavior of the Pap system under varying levels of various regulatory

molecules and under the influence of various gene insertions and mutations. When

possible, predictions have been validated against experimental observations. In

all cases, the current model matches the observed qualitative behavior of the Pap

switch and provides an excellent starting point for future Pap modeling endeavors.

Mustafa Khammash
Dissertation Committee Chair
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Chapter 1

Introduction

In cellular biology, much remains unexplained. While modern genetic and

molecular biology techniques have successfully revealed elaborate regulatory net-

works that ultimately control various biological responses, the experiments needed

to explore these systems are expensive, time-consuming or otherwise difficult to

perform. With the right tools, computational models can help fill the gaps in our

understanding, enable us to design better experiments, and increase the yield of

experimental procedures. A major goal of Systems Biology is to combine exper-

imental procedures and computational models to explain how individual regula-

tory steps integrate to produce observable responses. Such models could assist

biologists and biochemists to (1) gain new understanding into complicated regu-

latory phenomena, (2) pinpoint key regulatory features and alter those features to

achieve desired outcomes, and (3) achieve better understanding of how and why

regulatory systems have evolved in different species. One of the biggest hurdles

in this endeavor is dealing with the inherent stochasticity of cellular processes.

The cellular environment is abuzz with noise [60, 27, 95, 44, 76, 29, 51]. The

origin of this noise is attributed to the random events that govern the motion

of cellular constituents at the molecular level. Cellular noise not only results in
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random fluctuations within individual cells, but it is also a source of phenotypic

variability among clonal cellular populations [6]. In some instances, these fluctu-

ations are suppressed downstream through intricate dynamical networks that act

to filter the noise [22], much like a low pass filter attenuates high frequency sig-

nals. Yet in other instances, noise induced fluctuations are exploited to the cell’s

advantage. Researchers are only now beginning to understand that the richness

of stochastic phenomena in biology depends directly upon these interactions of

dynamics and noise and upon the mechanisms through which these interactions

occur. Intriguing examples of mechanisms that rely on noise include stochastic

switches [6, 66, 97], coherence resonance in oscillators [57], and stochastic focusing

for the amplification of signals [77].

Given the importance of noise induced stochastic fluctuations in the cell, the

quantitative modeling and analysis of these fluctuations is of paramount impor-

tance for the understanding and synthesis of biological networks. While mathe-

matical models of genetic networks often represent gene expression and regulation

as deterministic processes with continuous variables, the stochastic nature of cel-

lular noise necessitates an approach that models these variables as discrete and

stochastic. The continuous and deterministic approach makes sense when large

numbers of molecules justify a continuous valued concentration description using

mass-action kinetics. In this case, chemical reactions are modeled as reaction diffu-

sion processes, and their dynamics can be found with partial differential equations

(PDEs). When the reacting chemical solutions are well-mixed, these PDEs can

then be well approximated with ordinary differential equations (ODEs). On the

other hand, the cellular milieu is often home to key molecules that can be found

in very small integer populations [29]. Indeed in a typical living cell, it is not un-
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common for some of the key molecules have ten or fewer copies. Clearly, in these

instances the concentration description is meaningless, and a discrete stochastic

model of the chemical species is essential. The choice between the two modeling

approaches in not always clear. What is clear, however, is that as the size of

the system of interacting species decreases, intrinsic noise becomes increasingly

important (a relative change of one molecule is very important when there are

only ten to begin with). At the sub-cellular level where gene regulatory networks

reside, crucial chemical species such as DNA, RNA, and regulatory proteins may

be present in only one or two copies per cell [60]. In these networks, which affect

all aspects of life, stochastic effects have been found to play a significant and often

a detrimental role in various aspects of cell function.

As a simple example, Fig. 1.1 represents a generic gene regulatory network

comprised of only three mechanisms: transcription, translation, and regulatory

feedback. With intrinsic noise, even this simple system can exhibit a rich variety

of behaviors. For example, consider an open-loop system where transcription is

slow, but translation is very fast. Such a strategy, which may be used to conserve

energy [59], can result in systems where the transcripts may be entirely absent

from the cell most of the time. However, because of efficient translation, one of

these rare transcripts may occasionally result in large bursts of proteins [59, 76].

Because such events can happen in some cells and not in others, they may account

for huge variation in phenotype despite isogenic populations [76]. Conversely, if

transcription were much faster and translation slower, the same average amount

of protein may be found, but the variation could be far less [59].

Chemical regulators may also induce phenotypical variation despite homoge-

nous genotypes, as will be seen in great detail in the examination of the the Pap
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Figure 1.1: Schematic representation of gene transcription, translation and regu-
lation. When in an “on” configuration the gene will transcribe mRNA molecules
(stars). These, in turn, are translated to produce regulatory proteins, which can
regulate the gene, turning it “off” in the case of negative feedback or “on” in the
case of positive feedback.

Pili epigenetic switch in E. coli in Chapter 16 of this dissertation. In the pap

system, DNA adenine methylase (DAM) applies irremovable methyl groups at

some key regulatory regions of the DNA. In one location, these methyl groups

can help activate the pap gene, it another location, the methyl group will deac-

tivate the gene [46]. The system is further affected by intrinsic noise due to a

transcriptional feedback mechanism similar to that illustrated in Fig. 1.1. In this

case, the pap-encoded protein PapI works in conjunction with Leucine-responsive

regulator protein (Lrp) to block Dam from methylating the sites which turn the

gene expression off.

1.1 Outline of this Dissertation

This dissertation is comprised of three parts. The first part provides a brief

review of previous tools for the stochastic analysis of gene regulatory networks.

Chapter 2 reviews the discrete chemical reaction problem on the mesoscopic scale

4



and derives what is commonly referred to as the Chemical Master Equation

(CME). Next, Chapter 3 reviews a few of the recent Kinetic Monte Carlo ap-

proaches for generating sample trajectories of systems described by the CME.

Chapter 4 discusses some recently proposed analytical techniques for solving for

the evolution of moment distributions of stochastic processes.

The second part provides new analytical tools for the mathematical model-

ing and analysis of discrete stochastic systems. The vast majority of Chapters

5 through 11 focus on these new approaches for computing the solution to the

CME. This technique, called the Finite State Projection (FSP) method, involves

the projection of the solution of the CME onto finite, solvable subsets. In addition

to presenting and explaining the theory underlying the FSP approach, Chapters

6 through 10 describe some system theory based modifications and enhancements

that enable large reductions and increased efficiency with little to no loss in accu-

racy in the FSP solution.

While the FSP approach is applicable to any discrete state Markov process,

its development has been driven by the study of the gene regulatory systems.

As such, the third part of this dissertation illustrates the FSP methods on such

cellular networks. Chapter 13 considers a toy model of the gene regulatory network

that controls the expression of Pap pili in E. coli. Chapter 14 examines a toy

model of the Heat Shock mechanism in E. coli. Chapter 15 concentrates on a

detailed analysis of a stochastic model of Gardner’s genetic toggle switch [31].

The main case study in Chapter 16 then describes a much more detailed model of

the Pap switch, analyzes it using the various FSP tools, and validates it against

experimental studies in the literature. Finally, Chapter 17 summarizes the main

results of this work and outline a few directions for future work.

5



Chapter 2

The Chemical Master Equation

Gillespie’s 1992 paper [36] provides a good background on the stochastic chem-

ical kinetics problem and its major result: the forward Chapman Kolmogorov

equation, commonly referred to as the chemical master equation (CME). For con-

venience, this chapter provides a much simplified and less rigorous outline of his

argument. Consider two molecules s1 and s2 moving around in a system of volume

V . Suppose that molecule s1 moves with the speed u, but in randomly changing

directions. Suppose that a reaction s1 + s2 → s3 will occur when the center of

molecule s1 comes within a distance r of the center of molecule s2. In some small

fraction of time, dt, the molecule s1 will cover a distance udt and will sweep a

region dV whose volume is approximately πr2udt. If the center of s2 is in dV then

a reaction will occur; otherwise it will not. Since the system is well mixed, the

probability that s2 is in that region and that a reaction will occur is πr2uV −1dt.

If there were ξ1 molecules of s1 and ξ2 molecules of s2, then the probability that

any such reaction will occur is given by ξ1ξ2πr2uV −1dt.

For a chemical solution of N species, {s1, . . . , sN}, one can define the system

state as x = [ξ1, . . . , ξN ]. Each µth reaction is a transition from some state xi to

some other state xj = xi + νµ, where νµ is known as the stoichiometric vector.
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Following the methodology above, each reaction also has a propensity function,

wµ(x)dt, which is the probability that the µth reaction will happen in a time

step of length dt. For example, the reaction s1 + s2 → s3 discussed above has the

stoichiometric vector ν = [−1,−1, 1]T , and a propensity w(x)dt = ξ1ξ2πr2uV −1dt.

The stoichiometry and propensity functions for each of the M possible reac-

tions fully define the system dynamics and are sufficient to find sample trajectories

with the Monte Carlo methods of Chapter 3. However, for many interesting gene

regulatory problems individual system trajectories are not the best description.

Instead, it is desirable to analyze the dynamics in terms of probability distribu-

tions. For this it is useful to derive the chemical master equation (CME).

Suppose that one knows the probability of all states xi at time t, then the

probability that the system will be in the state xi at time, t + dt, is equal to the

sum of (i) the probability that the system begins in the state xi at t and remains

there until t+dt, and (ii) the probability that the system is in a different state at

time t and will transition to xi in the considered time step, dt. This probability

can be written as:

p(xi; t + dt) = p(xi; t)

(
1−

M∑

µ=1

wµ(x)dt

)
+

M∑

µ=1

p(xi − νµ; t)wµ(xi − νµ)dt.

(2.0.1)

From Eqn 2.0.1 it is relatively simple to derive the differential equation known as

the Chemical Master Equation, or CME [35]:

ṗ(x; t) = −p(x; t)
M∑

µ=1

wµ(x) +
M∑

µ=1

p(x− νµ; t)wµ(x− νµ). (2.0.2)

This time derivative of the probability density of state x can also be written in
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vector form as:

ṗ(x; t) =





−
∑M

µ=1 wµ(x)

w1(x− ν1)

w2(x− ν2)

...

wM(x− νM)





T 



p(x; t)

p(x− ν1); t)

p(x− ν2); t)

...

p(x− νM); t)





. (2.0.3)

Fix a sequence x1,x2, . . . of elements in NN and define X := [x1,x2, . . . ]T as

the set of all possible configurations. The particular sequence x1,x2, . . . may be

chosen to visit every element of the entire space NN . In this case, the choice of

X corresponds to a particular enumeration of the space NN . Once X is selected,

Eqn 2.0.3 can be rewritten as a single linear expression:

Ṗ(X; t) = A ·P(X; t), (2.0.4)

where P(X; t) := [p(x1, t), p(x2, t), . . . ]T , is the complete probability density

state vector at time t, and A is the infinitesimal generator of the discrete stochastic

process. For convenience, let the notation P(t) := P(X; t) denote the distribution

on the entire set X. The columns and rows of A are uniquely defined by the

system’s stoichiometry and the choice of X. Beginning at any state, xi, there can

be a maximum of M possible reactions; each reaction leads to a different state:

xj = xi + νµ. Thus, A is typically a very sparse matrix.

The infinitesimal generator contains information regarding every reaction, each

weighted by the corresponding propensity function, and the elements of A are

8



given as:

Aji =






−
∑M

µ=1(wµ(xi))

wµ(xi)

0

for (i = j)

for all j such that (xj = xi + νµ)

Otherwise






. (2.0.5)

A has the properties that it is independent of t; all of its diagonal elements are

non-positive; all its off-diagonal elements are non-negative; and all its columns

sum to exactly zero. The solution to the linear ODE beginning at t = 0 and

ending at t = tf in Eqn 2.0.4 is the expression:

P(tf ) = Φ(0, tf ) ·P(0). (2.0.6)

In the case where there are only a finite number of reachable states, the opera-

tor, Φ(0, tf ), is the exponential of Atf , and one can, in principle, compute the

solution: P(tf ) = exp(Atf )P(0). Of course, for many systems, X may be infinite

dimensional, or at least very large, and the corresponding analytical solution may

be very difficult, or even impossible, to compute. For such systems, researchers

have developed a number of different techniques, which will be discussed in the

following chapters.
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Chapter 3

Monte Carlo Solutions to the
CME

Because the CME is often infinite dimensional, it is usually impossible to solve

exactly. For this reason, the majority of analyses at the mesoscopic scale have

been conducted using kinetic Monte Carlo (MC) algorithms. The most widely

used of these algorithms is Gillespie’s Stochastic Simulation Algorithm (SSA)

[34, 35], for which there are large numbers of variants [33] and approximations

[82, 15, 43, 86, 38, 96, 19, 17, 84, 37, 83, 81]. These are discussed in the following

subsections.

3.1 The Stochastic Simulation Algorithm

Gillespie Stochastic Simulation Algorithm (SSA) [34, 35] is the most common

tool in use for stochastic analyses at the mesoscopic level. This is to be expected,

because once one defines the propensity functions and the stoichiometry for each

of the M reactions, the SSA is very easy to apply. Each step of the SSA begins

at a random state x and a time t and is comprised of three tasks, (i) generate the

time until the next reaction, (ii) determine which reaction happens at that time,
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and (iii) update the time and state to reflect the previous two choices. There are

two common methods typically used to accomplish tasks (i) and (ii) above; these

are referred to as the “direct” and “next reaction” methods and are considered

below.

For a single reaction with propensity function, w(x), the random time of

the next reaction, τ̃ , is an exponentially distributed random variable with mean

w−1(x):

Pτ̃ (τ) =
1

w(x)
exp

(
− τ

w(x)

)
,

where the notation Pτ̃ (τ) denotes the probability that the random variable τ̃

is equal to τ . For M different possible reactions with propensities w(x) =

[w1(x), . . . , wM(x)], τ̃ is the minimum of M such random variables. In the “direct”

SSA method, one utilizes the fact that the minimum of a finite number of expo-

nential random variables is itself an exponential random variable. Thus, when

there are multiple reaction channels, the random time τ̃ follows the distribution:

Pτ̃ (τ) =
1

∑M
µ=1 wµ(x)

exp

(
− τ

∑M
µ=1 wµ(x)

)
,

=
1

|w(x)|1
exp

(
− τ

|w(x)|1

)
.

In practice, τ̃ is found by first generating a uniform random number r̃1 in the

interval (0, 1) and applying the relation:

τ̃ =
1

|w(x)|1
log

1

r̃1
.

To determine which of the M reactions occurs at t + τ̃ , one must generate

a second random variable, µ̃, from the set {1, 2, . . . ,M} with the probability

11



distribution given by:

Pµ̃(µ) =
wµ(x)

|w(x)|1
.

In practice, µ̃ is typically generated by using a second uniform random variable

r̃2 on the interval (0,1) and the relation:

µ̃ = min(k) such that
k∑

µ=1

wµ(x)

|w(x)|1
> r2.

Thus, in the direct method of the SSA, the random time and type of each reaction

is generated with a set of exactly two uniform random numbers.

In the “next reaction” method of [33], the authors show that when there is

a very large number of different reaction types, then an individual reaction may

not affect the majority of the remaining propensity functions. Such an abundance

of reaction channels is common in reaction diffusion processes where a reaction

in one spatial cell has no effect on reaction channels in other spatial cells. In

such cases, it may be advantageous to generate the individual times for each

of the M reaction channels rather than the time of the first reaction as in the

direct method. Many of these reaction times can then be updated and reused

over many subsequent time steps. In the limit of an infinite number of reaction

types or completely uncoupled reaction rates, such an approach will require only

one random variable per reaction. However, in many cases the computational

cost of storing and updating reaction times from one time step to the next may

overshadow the benefit seen by requiring fewer random numbers [18]. In [81]

the next reaction method has also been used in conjunction with the τ leaping

strategy described below.

In either the direct or the next reaction methods, once τ̃ and µ̃ have been

12



chosen, the system is updated to t = t + τ̃ and x = x + νµ̃, and the process

continues until the final time of interest is reached. Both SSA approaches are

exact in the sense that they generate a random trajectory, x̃(t), with a probability

distribution exactly equal to the solution of the corresponding CME at each point

in time. However, each run of the SSA provides only a single, not necessarily

representative, trajectory. Should one actually wish to reproduce the probability

distribution, the SSA must be run many times. For this reason, many accelerated

approximations have been proposed to improve the efficiency of the SSA.

3.1.1 System partitioning methods

In the first type of approximation to the SSA, the system is partitioned into

slow and fast portions [82, 15, 16, 94]. This partitioning has been approached in a

number of different manners. In [82] the system is separated into slow “primary”

and fast “intermediate” species. This method uses three random variables at each

step: first, the primary species’ populations are held constant, and the population

of the intermediate species is generated as a random variable from its quasi-steady-

state (QSS) distribution. The dynamics of the “primary” species are then found

with two more random variables, similar to the SSA above but with propensity

functions depending upon the chosen populations of the intermediates species.

The more recently developed Slow-Scale SSA (ssSSA) [15, 16] is very similar in

that the system is again separated into sets of slow and fast species. The ssSSA

differs in that it does not explicitly generate a realization for the fast species, but

instead uses the QSS distribution to scale the propensities of the slow reactions.

In [15, 16] the QSS approximation is made by solving a relatively simple algebraic

equation for the quasi-steady distribution of the fast species. In some cases this
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distribution does not have such a simple form, and alternative approaches must

be taken to determine this distribution. In [107] and [87] the authors run a

short run on an inner SSA loop for the fast reactions in order to compute the

average rate of the slow reactions. As we will see later in Chapter 7, the methods

in [15, 16, 107, 87] effectively work by generating trajectories for a new master

equation that corresponds to a slow manifold projection of the original master

equation.

Hybrid Methods

So-called hybrid methods such as [43] and [86] also separate the system into

separate frequent and infrequent partitions, but these methods do not then rely

upon a QSS approximation. Instead, the fast reactions are approximated with

deterministic ODEs or as continuous valued Markov processes using Langevin

equations, and the slow reactions are treated in a manner similar to the SSA ex-

cept now with time varying propensity functions. Such approaches are very useful

when there is a huge separation in the population numbers of different species.

3.1.2 τ leap methods

The second approach to accelerating the SSA assumes that propensity func-

tions are constant over small time intervals. With this “τ leap assumption” one

can model each of the M reaction channels as an independent Poisson random

process [38]. Beginning at time t and state x(t), the state at the end of a time
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step of length τ is approximated as

x(t + τ) = x(t) +
M∑

µ=1

k̃µνµ, (3.1.1)

where each k̃µ is a random variable chosen from the Poisson distribution:

Pk̃µ
(k) =

λke−λ

k!
,

where λ = wµ(x)τ . The accuracy of τ leaping methods depends only upon how

well the τ leap assumption is satisfied. Naturally, the τ leap assumption is best

satisfied when all species have sufficiently large populations and all propensities

functions are relatively smooth. Otherwise, small changes in populations could

result in large relative changes in propensities. Ignoring these changes can easily

lead to unrealistic predictions of negative populations and/or numerical stiffness.

One may avoid negative populations by using a Binomial τ leap strategy [96, 19]

or by adaptively choosing the size of each τ leap [17]. One can also ameliorate

the problem of numerical stiffness using implicit methods such as that in [84].

While these approaches relieve the possibility of negative populations, one must

be careful that they do not artificially satisfy the τ leap assumption by changing

the system. In particular, if the true system has propensity functions that change

quickly in comparison to the length of the τ leap, then no τ leap strategy will

satisfy the τ leap assumption. Nearly all of the examples considered in this work

fall into this category. For example, the majority of the reactions of the Pap

models of Chapters 13 and 16 have propensity functions that change between

positive values and zero with almost every reaction. Similarly, the reactions of the

toy heat shock model and the toggle switch in Chapters 14 and 15 change very
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quickly. In each of these, the time leap can be no longer that the average step of

the SSA.

3.1.3 Chemical Langevin Equation

When the populations are very large, and the propensity functions are very

smooth, the chemical species may be more easily modeled with continuous vari-

ables using the chemical Langevin equation [37, 39, 5]. In this solution scheme,

one assumes that many reactions will occur in the macroscopic infinitesimal time

step dt without violating the τ leap assumption. At large numbers, the Poisson

random variable k̃µ in (3.1.1) can be replaced with a much more easily generated

continuous valued Gaussian random variable, ỹµ:

Pỹµ(y) =
1√

2πσ2
exp

(
(y − σ2)2

2σ2

)
,

where σ2 = wµ(x)dt is the mean number of reactions in the time step dt. The

final result after this approximation is that the process is treated as a stochastic

differential equation (SDE) driven by white noise whose variance is equal to its

mean [37, 39].

3.1.4 StochSim

In addition to the SSA, one other common Monte Carlo algorithm is StochSim

[64, 65]. This algorithm is an object oriented approach that considers each indi-

vidual molecule as they interact with one another. The main advantage of this

type of approach occurs when the number of molecular species and reactions is ex-

tremely large in comparison to the actual population levels. This can be the case
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when the reacting molecules exhibits a vast number of chemically distinct con-

figurations due to various methylation, phosphorylation or other distinct binding

patterns.

3.2 Solving the CME with Monte Carlo Algo-

rithms

Monte Carlo algorithms such as SSA and its various approximations can pro-

vide excellent sample trajectories of the process whose distribution evolves ac-

cording to the chemical master equation. In many cases, these trajectories may

be all that is needed in the analysis of a stochastic chemical process. In many

other situations, however, a single trajectory or set of trajectories does not provide

enough information regarding the overall behavior of the reacting system. In these

cases, one may wish to actually solve the CME in order to find the probability

of certain traits at certain instances in time. For these, one needs to run many

MC simulations. As more runs of the MC algorithm are performed, the error will

converge to zero with order O(N−1/2), where N is the number of runs. In other

words to diminish the error by a factor of ten, one will require a hundred times

as many MC runs. For high precision requirements, the number of MC runs can

be prohibitive. For example, three MC analyses of a simple coin toss experiment

will predict the probability of heads is 0.500457, 0.500370, and 0.499724 after 106

tosses yielding relative errors that of 0.000914 , 0.000740, and 0.000552, respec-

tively. As expected these errors are on the order of
√

10−6 = 10−3. For further

comparison, Fig. 3.1 shows the convergence of the error with increasing numbers

of coin tosses.
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Figure 3.1: Convergence of the error for a simple Monte Carlo Algorithm coin
toss experiment. The error, (#heads/N − 0.5) is plotted versus the number of
coin tosses, N . This error converges slowly to zero with O(N−1/2) (compare blue
curve to red line).
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Chapter 4

Moment Analyses for the CME

Instead of simulating the chemical master equation with a large set of numeri-

cal Monte Carlo simulations, one may instead choose to solve or approximate the

CME in terms of the evolution of its statistical means and higher order moments

of the multi-variate distribution. If w(x) denotes the propensity functions and

S = [ν1, . . . , νM ] denotes the stoichiometry matrix of the M different reactions,

then the expected change in x over the time interval dt can be written as:

E{x(t + dt)} = E{x(t)}+ SE{w(x(t))}dt, (4.0.1)

and the mean evolves according to the relatively simple ODE:

d

dt
E{x} = SE{w(x).} (4.0.2)

For systems with affine propensity functions, w(x) = Fx + K, this approach

is relatively straightforward. In this case, the expected value of the propensity

function is simply E{w(x)} = FE{x}+K, and the equation for the first moment

is:

d

dt
E{x} = S (FE{x}+ K) .
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Similarly, the second, un-centered moment can be shown [53, 56] to evolve accord-

ing to the equation:

d

dt
E{xxT} = E{xwT (x)ST + Sw(x)xT + Sdiag[w(x)]ST}, (4.0.3)

where diag[.] refers to a square diagonal matrix with the elements of [.] on the di-

agonals. Applying the affine linear formulation for the propensity function yields:

d

dt
E{xxT} = E{x(Fx + K)TST + S(Fx + K)xT + Sdiag[Fx + K]ST},

= E{x(xTFT + KT )ST + S(Fx + K)xT + Sdiag[Fx + K]ST},

= E{xxT}FTST + SFE{xxT}

+ E{x}KTST + SKE{xT}+ E{Sdiag[Fx + K]ST}.

Similar equations can be found for the covariance and auto covariance matrices

(see for example [53, 56]). The important observation to make is that in each case,

when the propensity functions are all linear or affine linear, then these moment

equations do not depend upon higher order moments. Thus, the equations are

finite dimensional and easily solved or simulated. However, when the propensity

function are higher order in x then equations 4.0.2 and 4.0.3 each depend upon all

higher order moments, and further approximations are necessary. Some of these

approximations are covered in the following paragraphs.

4.1 Linear Noise Approximation

The first and most common approximation of the moment dynamics is the

Linear Noise Approximation (LNA) [105, 26, 98], also known as van Kampen’s
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approximation. In the LNA, one expands the solution of the master equation in a

Taylor series about the macroscopic trajectory. The first order terms correspond

to the macroscopic rate equations, and the second order terms approximate the

system noise. The end result is a first order Fokker Planck equation, which is

far more readily solved than the CME. In [41] a similar approach is taken except

that the computation of the mean is coupled with that of the variances; this mass

fluctuations kinetics (MFK) approach allows one to capture fluctuations where

the mean deviates from the macroscopic equation. This is particularly important

for systems that exhibit stochastic focusing [77]. Because the LNA and MFK

approaches both assume that the distribution is Gaussian, they will typically be

unable to describe processes that are non-gaussian in nature. In particular, these

methods will fail in the analysis of processes with multimodal distributions, such

as is the case for systems exhibiting stochastic switching as in [6, 66, 97].

4.2 Moment Closure and Moment Matching Ap-

proaches

In a similar approach, the dynamics of each uncentered moment of the CME

can be shown to depend linearly upon the rest to form an infinite dimensional

moment dynamics linear ODE equivalent to the CME [47, 92]. By assuming that

the distributions are normal [108], lognormal [50, 91], Poisson and binomial [72],

or another common form, one can approximate higher order moments in terms of

the lower moments and effectively truncate the dynamics. Singh and Hespanha

review a few of these approaches for the stochastic logistic model in population

biology [92]. Each of these shapes may work well in different situations. Without
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prior knowledge of the shape of the distribution, however, it is impossible to know

which distribution will work best for which system. In the same paper, Singh

and Hespanha also introduce an effective moment closure technique, which does

not make an a priori assumption on the distribution shape, but instead defines a

moment closure scheme in which they match the time derivatives of the truncated

moment dynamics to the full moment dynamics at the initial time t0 [92, 93].

The separable structure of this derivative matching approach ensures that the

approximate system of equations has a unique, real and positive steady-state so-

lution. Furthermore, the derivative matching guarantees a good approximation

during short periods of time. The authors of [93] provide explicit formulas to con-

struct the moment closure functions for arbitrary nth-order truncation, and it is

observed that higher values of n lead to better moment dynamics approximations.

By examining other moment closure functions, the authors showed that without

achieving derivative matching, closure techniques typically fail to closely approxi-

mate the exact moment solution. By extending these closure functions to enforce

derivative matching, one can improve the accuracy of many previously proposed

moment closure functions.

Problems with a single macroscopic steady state often result in unimodal dis-

tributions and can be expressed with only the first few moments. For these, the

above techniques are very well suited. However, problems that exhibit multi-

modal distributions, such as switching systems, will require many higher order

moments, and the applicability of these methods may quickly degrade.
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Chapter 5

The Finite State Projection
Method (FSP)

Chapter 2 above shows how one can derive the chemical master equation in

the form of (2.0.4):

Ṗ(t) = A ·P(t),

for which the solution was given in (2.0.6) as:

P(tf ) = Φ(0, tf ) ·P(0).

In the case where there are only a finite number of reachable states, the operator,

Φ(0, tf ), is the exponential of Atf , and one can in principle compute the solution:

P(tf ) = exp(Atf )P(0).

For a few examples in this study, we are interested only in the probability

density at the final time, tf . This information is simply obtained by computing

the exponential of (Atf ) directly and multiplying the resulting matrix by the

initial probability density vector. Moler and Van Loan provide many methods for

performing this computation in their celebrated 1978 paper “Nineteen Dubious

Ways to Compute the Exponential of a Matrix” [61] and its revisited edition of

23



2003 [62]. The choice of approach obviously depends upon the particular numerical

study. For many examples, exponentials will be computed using the expm function

in MathWorks Matlab. This built-in routine is based upon a scaling and squaring

algorithm with a Pade approximation. Other cases will use Roger Sidje’s Expokit–

a powerful matrix exponential package, which solves the system of equations in

(2.0.4) using a Krylov subspace approximation [90]. In some situations, one may

wish to obtain the probability density at many intermediate times as well as the

final time. For this it may be more efficient not to directly calculate the matrix

exponential, but instead use a numerical stiff ODE solver such as one of Matlab’s

ode15s or ode23s. As will be seen in the following chapters, each of the approaches

may be advantageous in different circumstances.

In practice there may be many simple chemical systems for which the expo-

nential representation will produce an exact solution (see the example in Section

13.1). Such cases include any system in which the number of molecules in each

species is bounded through considerations such as the conservation of mass. How-

ever, when A is infinite dimensional or extremely large, the corresponding analytic

solution is unclear or vastly difficult to compute. Even in these cases, however,

one may devise a systematic means of approximating the full system using finite

dimensional sub-systems. This systematic truncation approach is known as the

Finite State Projection method [67].

The presentation of the FSP method first requires the introduction of some

convenient notation. Let J = {j1, j2, j3, . . .} denote an ordered index set corre-

sponding to a specific set of states, {xj1 , xj2 , xj3 , . . .}. For any matrix, let AIJ

denote a sub-matrix of A such that the rows have been chosen and ordered ac-

cording to I and the columns have been chosen and ordered according to J . For
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example, if A is given by:

A =





1 2 3

4 5 6

7 8 9




,

and I and J are defined as {3, 1, 2} and {1, 3}, respectively; then the sub-matrix,

AIJ is given as:

AIJ =





7 9

1 3

4 6




.

Similarly let AJ denote the principle sub-matrix of A, in which both rows and

columns have been chosen and ordered according to J . We will use the notation

J ′ to denote the complement of the set J on the entire set, X. Define the sequence

{Jk} as a sequence of nested sets such that J1 ⊆ J2 ⊆ J3 ⊆ · · · . In addition to

the set notation, the vector 1 will be used to denote a column of all ones such

that for any vector, v, the product 1Tv is the sum of the elements in v.

LetM denote a Markov chain on the configuration set X, such as that shown in

Fig. 5.1a, whose master equation is Ṗ(t) = AP(t), with initial distribution P(0).

Let MJ denote a reduced Markov chain, such as that in Fig. 5.1b, comprised

of the configurations indexed by J plus a single absorbing state. The master

equation of MJ is given by




ṖFSP

J (t)

Ġ(t)



 =




AJ 0

−1TAJ 0








PFSP

J (t)

G(t)



 , (5.0.1)
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with initial distribution,




PFSP

J (0)

G(0)



 =




PJ(0)

1−
∑

PJ(0)



 .

Because this master equation is finite dimensional, its solution can be found:




PFSP

J (t)

G(t)



 =




exp(AJtf ) 0

−1T exp(AJt) 1








PFSP

J (0)

G(0)



 , (5.0.2)

At this point it is crucial to have a very clear understanding of how the process

MJ relates to M and in particular the definitions of the terms PFSP
J (t) and G(t).

First, the scalar G(0) is the exact probability that the system begins in the set

XJ ′ at time t = 0, and G(t) is the exact probability that the system has been in

the set XJ ′ at any time τ ∈ [0, t]. Second, the vector PFSP
J (0) contains the exact

probabilities that the system begins in the set XJ at time t = 0, and PFSP
J (t) are

the exact joint probabilities that the system (i) is in the corresponding states XJ at

time t, and (ii) the system has remained in the set XJ for all τ ∈ [0, t]. Note that

PFSP
J (t) also provides a finite dimensional approximation of the solution to the

CME, as is clearly seen in the following reformulation of the original FSP theorems

(The proofs presented here are highly modified from their original presentation in

[67]):

Lemma 5.0.1. For any index set J and any initial distribution P(0),

PJ(t) ≥ PFSP
J (t) ≥ 0.

Proof. PFSP
J (t) is a more restrictive joint distribution than PJ(t).
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Figure 5.1: (a) Two dimensional lattice of configurations for a chemically reacting
system with two species. The system begins in the configuration shaded in grey
and undergoes three reactions: The first reaction ∅ → s1 results in a net gain of
one s1 molecule and is represented by right arrows. The second reaction s1 → ∅
results in a net loss of one s1 molecule and is represented by a left arrow. The
third reaction s1 → s2 results in a loss of one s1 molecule and a gain of one s2

molecule. The dimension of the Master equation is equal to the total number of
configurations, and is too large to solve exactly. (b) In the original FSP algorithm
a configuration subset is chosen and all remaining configurations are projected to
a single absorbing point, G. This results in a small dimensional solvable master
equation, where the total error is given by the probability that has leaked into G.
(c) Instead of considering only a single absorbing point, transitions out of the finite
projection can be sorted as to how they leave the projection space. In this case,
G1 and G2 absorb the probability that has leaked out through reactions 1 and 2,
respectively. This information can then be used to expand the configuration set
in later iterations of the FSP algorithm (See Section 5.4).
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Theorem 5.0.2. Consider any Markov chain M and its reduced Markov chain

MJ . If G(tf ) = ε, then

∣∣∣∣∣∣∣




PJ(tf )

PJ ′(tf )



−




PFSP

J (tf )

0





∣∣∣∣∣∣∣
1

= ε. (5.0.3)

Proof. The left side of (5.0.3) can be expanded to:

LHS =
∣∣PJ(tf )−PFSP

J (tf )
∣∣
1
+ |PJ ′(tf )|1 .

Applying the Lemma 5.0.1 yields

LHS = |PJ(tf )|1 −
∣∣PFSP

J (tf )
∣∣
1
+ |PJ ′(tf )|1 .

Since P(tf ) is a probability distribution |PJ(tf )|1 + |PJ ′(tf )|1 = |P(tf )|1 = 1 and

the LHS can be rewritten:

LHS = 1−
∣∣PFSP

J (tf )
∣∣
1
.

Because the pair {G(tf ),PFSP
J (tf )} are a probability distribution for MJ , one

can see that the right hand side is precisely equal to |G(tf )|1 and the proof is

complete.

Lemma 5.0.1 and Theorem 5.0.2, which will hereafter be referred to as the Fi-

nite State Projection theorems, tell us two very important pieces of information.

First, Lemma 5.0.1 shows that as we increase the size of the finite projection space,

the approximation result monotonically increases. Second, Theorem 5.0.2 guaran-

tees that the approximate solution never exceeds the actual solution and gives us
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certificate of how close the approximation is to the true solution. The interested

reader should note that these theorems and their respective proofs apply with no

modification to a far wider class of problems than the simple time-invariant, dis-

crete state Markov processes considered here. In fact, the FSP Theorems apply

to any time varying stochastic process.

5.1 Basic FSP Algorithm

Together, the two FSP theorems above suggest a systematic procedure to

to evaluate stochastic processes such as those described by the Chemical Mas-

ter Equation. Basically, this procedure works by examining a sequence of finite

projections of the CME. For each projection set, one can obtain an accuracy guar-

antee using Theorem 5.0.2. If this accuracy is insufficient, more configurations can

be added to the projection set, thereby monotonically improving the accuracy as

guaranteed by Lemma 5.0.1. The Finite State Projection algorithm, can be stated

as follows:

The Finite State Projection Algorithm

Step 0 Define the propensity functions and stoichiometry for all reactions.
Choose the initial probability distribution, P(0).
Choose the final time of interest, tf .
Specify the total amount of acceptable error, ε > 0.
Choose an initial finite set of states, XJo , for the FSP.
Initialize a counter, i = 0.

Step 1 Use propensity functions and stoichiometry to form AJi .
Compute ΓJi = |exp(AJitf )PJi(0)|1.

Step 2 If ΓJi ≥ 1− ε, Stop.
exp(AJitf )PJi(0) approximates PJi(tf ) to within a total error of ε.
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Step 3 Add more states to find XJi+1 .
Increment i and return to Step 1.

In Steps 0 and 3 of the above algorithm, the choice of how to initialize the

set of states for the finite state projection and the approach to adding new states

to the FSP has not been explicitly stated. While Lemma 5.0.1 guarantees that

adding new states can only improve the accuracy of the approximate solution,

it does not state which additions are most beneficial. In practice there may be

many methods of choosing how to add states to the projection, and the efficiency

of each method may depend upon the class of problem. In general, the best

methods will utilize knowledge of the stoichiometry of the chemical reactions and

avoid including unreachable states. The following sections illustrate a few such

methods to initialize and expand the FSP.

5.2 Initializing XJ0

In the zeroth step of the FSP algorithm, the initial projection set XJ0 can

be an arbitrarily chosen set of configurations reachable from the initial condition.

The most obvious choice is simply to choose XJ0 to contain only the initial config-

uration: XJ0 = {x(0)}. Instead of choosing XJ0 offline or arbitrarily, it is better

to run the SSA [35] a few times and record every configuration reached in those

simulations. The set of states reached in those simulations can then be used as the

initial projection configuration space, XJ0 . If one uses more SSA runs, XJ0 will

likely be larger and therefore retain a larger measure of the probability distribu-

tion in the specified time interval. Therefore, fewer iterations should be necessary

until the FSP algorithm converges.
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Figure 5.2: Schematic of a two dimensional integer lattice representing the infinite
states of a discrete valued Markov process. Each integer valued state vector [a,b]
is represented by a circle and the directionality of transitions between states are
shown by the connecting arrows.

5.3 Expansion through N-step Reachability

In order to properly introduce the process of expanding the state space through

the idea of reachability, it helps to introduce some additional concepts. Consider

the generic two-dimensional infinite state space lattice shown in Figure 5.2. In

general any chemically reacting system can be represented by an N -dimensional

integer lattice, where N is the number of reacting species, and where every node on

the lattice is unique and can be enumerated. In Figure 5.2, each circle represents

a specific population vector xT = [a, b], and the initial condition is shaded in

black. Reactions are shown with arrows connecting the states. For this specific

system, the diagonal oriented reactions are reversible, or bidirectional, while the

horizontal reactions are irreversible.

Let Ik denote the set of all states that can be reached from the initial condition

in k or fewer chemical reactions. For instance, in Figure 5.2, Io consists of only

the initial condition, which is labeled with the number zero. Similarly, I1 includes

the initial condition and all the green nodes containing the number 1. In general
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Ik contains all states in Ik−1 combined with all states that can be reached via a

single reaction beginning in Ik−1. Consider any finite set of states, IR, which are

reachable from the initial set, I0. It is not difficult to see that there will always

exist a finite integer, kR, such that Ik ⊇ IR for all k ≥ kR. For this method of

including sequentially reachable states, the following result guarantees that if a

finite state projection exists that satisfies the stopping criterion, then the FSP

algorithm will converge in a finite number of steps.

Proposition 5.3.1. Suppose that there exists a finite set of states indexed by S

for which the FSP meets the stopping criterion:

|exp(AStf )PS(0)|1 ≥ 1− ε. (5.3.1)

Then there exists a number of reactions, m, such that the set of reachable states,

Ik, also satisfies 5.3.1 for all k ≥ m.

Proof. The finite set, S can be separated into the reachable subset, R, and the

unreachable subset, U . Without loss of generality, the state reaction matrix, AS

can be written as:

AS =




AR B

C AU



 ,

and the initial condition, which must be contained in the reachable space, can be

written as:

PS(0) =




PR(0)

PU(0)



 =




PR(0)

0



 .

Since the states in U are unreachable from the states in R, the matrix C is zero.
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Through series expansion, the exponential of (AStf ) can be written as:

exp(AStf ) =








I 0

0 I



 +




AR B

0 AU



 tf +
1
2




A2

R ARB + BAU

0 A2
U



 t2f + . . .



 .

Combining terms allows one to write the matrix exponential as:

exp(AStf ) =




exp(ARt) Q

0 exp(AU t)



 ,

where Q is a positive matrix. Substituting this expression into Eqn 5.3.1 gives:

1− ε ≤ |exp(AStf )PS(0)|1 = |exp(ARtf )PR(0)|1 . (5.3.2)

Choose m large enough such that Jm ⊇ R, then the set indexed by Jk satisfies

Eqn 5.3.1 for all k ≥ m, completing the proof.

Proposition 5.3.1 requires that there exists a finite set of states in which the

system remains (with probability 1 − ε) for the entire time interval, t ∈ (0, tf ).

If this assumption is satisfied, then the N-step FSP algorithm will produce an

acceptable approximation within a finite number of steps. If the population of

the system is bounded (i.e. by conservation of mass or volume), then such a set will

obviously exist. However, one can construct some pathological examples, where

the population becomes unbounded for some t ∈ (0, tf ) (with probability greater

than ε). For such examples, the FSP will fail to find a sufficient approximation to

the entire probability density vector. Such pathological examples cannot exist in

biology, but if such an example did exist, all other methods (SSA, τ leaping and

others) would similarly fail.
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5.4 Expansion through Probability Tracking

In the previous subsection, the FSP expansion was performed using the concept

of N−step reachability, where each set {XJN} included all configurations that are

reachable from XJ0 in N reactions or fewer. Proposition 5.3.1 guarantees that if

there exists a sufficiently accurate FSP solution, then the FSP algorithm with such

an expansion routine is guaranteed to converge in a finite number of steps. This

section documents an improved version of the N -step reachability routine. In the

original FSP approach all configurations outside the set XJ have been projected to

a single point. Many alternative projections are possible. In particular, one can

choose M absorbing points {G1, . . . , GM} where each Gµ(t) corresponds to the

probability that the system has left the set XJ = {xj1 ,xj2 , . . .} via a µth reaction.

Fig. 5.1c illustrates such a projection choice. For this choice, one arrives at a new

master equation:




ṖFSP

J (t)

Ġ(t)



 =




AJ 0

Q 0








PFSP

J (t)

G(t)



 , (5.4.1)

where G = [G1, . . . , GM ]T and the matrix Q is given by

Qµk =






aµ(xjk
)

0

if (xjk
+ νµ) /∈ XJ

Otherwise





.

The solution of (5.4.1) at a time tf has the form




PFSP

J (t)

G(t)



 =




exp(AJtf ) 0

∫ tf
0 Q exp(AJτ)dτ I








PFSP

J (0)

G(0)



 , (5.4.2)
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and yields all of the same information as (5.0.2), but it now provides additional

useful knowledge. Specifically, each column of the operator in (5.4.2) corresponds

to a specific xi ∈ XJ . Each of the last M elements of the column corresponding

to xi gives the exact probability that a trajectory beginning in xi at time t = 0

will have exited the full set XJ via a specific reaction channel before the time

t = tf . This knowledge is easily incorporated into Step 3 of the above algorithm.

If most of the probability measure left via one particular reaction, it is reasonable

to expand XJ in the corresponding direction. Conversely, if very little of the

probability measure leaks out via a given reaction, it would be useless to expand

the projection in that direction.

For the basic FSP algorithm with these or any other expansion routine, if one

wishes to find a solution that is accurate to within ε at a time tf , he or she must

find a finite set of configurations such that the probability of ever leaving that set

during the time interval [0, tf ] is less than ε. For many problems, including the

examples shown in [67, 66], this set of configurations may be small enough that

one can easily compute a single matrix exponential to approximate the solution

to the CME. However, in other situations the configuration space required for a

one matrix solution may be exorbitantly large. The following chapters present a

number of means in which the FSP can be extended to handle much more involved

systems. Chapter 6 uses concepts of observability and reachability to reduce the

system to its minimal realization; Chapter 7 reduces the system of ODEs using

time scale separation based approximations. In Chapters 8 and 9, the FSP is

improved to exploit properties of superposition and time invariance, respectively.

In Chapter 10, the FSP problem is reduced by making an assumption that the

distribution of the system on the full integer lattice can be interpolated from
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among points of a much coarser lattice.
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Chapter 6

Minimal Realizations for the FSP
Method

The finite state projection works by providing a bulk reduction to the chemical

master equation. This reduction transforms an infinite dimensional system into

a finite dimensional system, but often the reduced system remains excessively

high in its dimensionality. In these cases further reduction are required. The

first such reduction to be considered in this chapter is based upon well established

results from linear system’s theory, particularly the concepts of controllability and

observability.

6.1 Aggregation of Unobservable Configurations

(OA-FSP)

Consider a master equation, Ṗ(t) = AP(t), for which the initial probability

density vector (pdv) is supported only on the set indexed by U ; in other words

pi(0) = 0 for all i /∈ U . For this system, the initial value problem is equivalent to
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the impulse response problem:

Ṗ(t) = AP(t) + bδ(t),

where b = P(0).

Suppose that one wishes only to compute the statistical quantity y(t) = CP(t).

As one example, if one were interested in estimating the mean or variance of the

population of the mth molecular species, then C would simply be the row vector

Cmean = [ x1m, x2m, . . . ],

or

Cvar = [ (x2
1m − x1m), (x2

2m − x2m), . . . ],

respectively, where xim is the mth component of the integer vector xi. Alterna-

tively, as in the next subsection, one may choose the output to correspond to the

probability density on a portion of the configuration set. For any C, the resulting

problem now takes on a familiar form:

Ṗ(t) = AP(t) + bδ(t);

y = CP(t). (6.1.1)

For systems on a finite configuration set, or for systems that have been projected

onto a finite configuration set, this standard representation is open to a host

of computational tools already available for linear time invariant systems (for

examples, see [4]). These tools have been developed for arbitrary control inputs

but work reasonable well for the analysis of master equation ODEs in which the
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input is a single unit impulse at the initial time. Additional model reductions may

be possible to take advantage of this more specific formulation. In cases where

one wishes to analyze the system with many different initial conditions, one can

replace b with a matrix B whose columns span all of the various initial conditions.

The following subsection illustrates how one may use concepts closely related

to observability and reachability to easily improve upon the efficiency of the FSP.

Later, Subsection 11.2.1 will also illustrate how Hankel norm based balanced trun-

cation can be used to reduce the order of the FSP analysis.

6.1.1 Estimating the probability of important states

In many cases, one is not interested in the probabilities of every possible config-

uration, but instead one wishes only to know the probabilities of certain important

configurations. Suppose that the system begins with the known population vec-

tor, xu, and we want only the probability distribution on the configuration subset

XK = {xk1 ,xk2 , . . .}. In other words, we wish to compute y(t) = PK(t). For

example, XK may correspond to configurations that exhibit a specific biologi-

cal trait, such as the expression of a certain gene. As above, define the vector

b = P(0) = {bi}∞i=1. In this case bi = 1 for i = u and zero otherwise. For this

b and the impulse response in (6.1.1), let XR be the subset of all configuration

points xi such that pi(t) > 0 at any t ≥ 0. This subset is indexed by R to denote

that it is the reachable configuration subset; its complement XR′ is the unreachable

configuration subset. Define the observable configuration subset, XO, as the set of

all xi such that pi(t0) > 0 at time t0 guarantees that |y| > 0 at some t ≥ t0. We

will call the complement, XO′ , the unobservable configuration subset. Note that

our definitions of reachability and observability are slightly less restrictive than
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the traditional usage. While using the usual concepts of observability and reacha-

bility would often allow bigger reductions in the order of the problem (See Section

11.2.1), it is often much easier–and less computationally intensive–to categorize

the system as shown here.

Now that the configuration set has been decomposed into subsets, we can

introduce the following theorem:

Theorem 6.1.1. Consider a process whose distribution evolves according to the

linear ODE: 


ṖI1(t)

ṖI2(t)



 =




AI1 0

AI2I1 AI2








PI1(t)

PI2(t)



 , (6.1.2)

where I1 and I2 are disjoint index sets.

If for some finite index set J ⊆ I1, ε > 0, and tf ≥ 0,

1T exp




AJtf 0

1TAI2Jtf 0








PJ(0)

1TPI2(0)



 ≥ 1− ε, (6.1.3)

then

exp(AJtf )PJ(0) ≤ PJ(tf ), and (6.1.4)

|PJ(tf )− exp(AJtf )PJ(0)|1 ≤ ε. (6.1.5)

Proof. We begin by proving (6.1.4). Let J ′ denote the complement of J on the

set I1. The evolution of the full probability density vector is governed by the
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permuted ODE:





ṖJ

ṖJ ′

ṖI2




=





AJ AJJ ′ 0

AJ ′J AJ ′ 0

AI2J AI2J ′ AI2









PJ

PJ ′

PI2




, (6.1.6)

where the submatrices AJJ ′ and AI2J ′ are nonnegative since A has no negative

off-diagonal terms. We now sum all of the rows corresponding to the set I2:





ṖJ

ṖJ ′

1T ṖI2




=





AJ AJJ ′ 0

AJ ′J AJ ′ 0

1TAI2J 1TAI2J ′ 0









PJ

PJ ′

PI2




, (6.1.7)

where we have used the fact that all columns of A, particularly those indexed by

I2, sum to zero: 1TAI2 = 0.

Let pagg := 1TPI2 . The aggregated probability density is now governed by the

finite linear ODE:




ṖJ

ṗagg



 =




AJ 0

1TAI2J 0








PJ

PI2



 +




AJJ ′

1TAI2J ′



PJ ′ .

The solution of this forced ODE is




PJ(tf )

pagg(tf )



 = exp




AJtf 0

1TAI2Jtf 0








PJ(0)

pagg(0)



 +

∫ tf

0

exp




AJ(tf − τ) 0

1TAI2J(tf − τ) 0








AJJ ′

1TAI2J ′



PJ ′(τ)dτ.
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Since AJJ ′ , AI2J ′ , PJ ′(t), and exp




AJt 0

1TAI2Jt 0



 are all nonnegative for t ≥ 0,

we obtain the inequality in (6.1.4) as the top part of




PJ(tf )

pagg(tf )



 ≥ exp




AJtf 0

1TAI2Jtf 0








PJ(0)

pagg(0)



 . (6.1.8)

Using (6.1.2) and the fact that the probability distribution the distribution on

the J and I2-indexed sets must be non-negative and have a combined sum of no

more than one we get:

∣∣∣∣∣∣∣
exp




AJtf 0

1TAI2Jtf 0








PJ(0)

1TPI2(0)





∣∣∣∣∣∣∣
1

≥

∣∣∣∣∣∣∣




PJ(tf )

pagg(tf )





∣∣∣∣∣∣∣
1

− ε, (6.1.9)

Finally, applying (6.1.8) and rearranging terms yields:

∣∣∣∣∣∣∣




PJ(tf )

pagg(tf )



− exp




AJtf 0

1TAI2Jtf 0








PJ(0)

1TPI2(0)





∣∣∣∣∣∣∣
1

ε, (6.1.10)

and completes the proof.

By our definition of reachable, the probability density vector on the configu-

ration subset XR′ is zero, and a permutation can reorder the remaining rows of

(2.0.4) as: 


ṖRO

ṖRO′



 =




ARO ARORO′

ARO′RO ARO′








PRO

PRO′



 , (6.1.11)

where RO := R ∩ O indexes the reachable/observable configuration subset, and

RO′ := R ∩O′ indexes the reachable/unobservable configuration subset. Also by

42



definition, no configuration in X′
O can transition into the configuration subset XO,

which results in the identity: ARORO′ = 0, and the system reduces to:




ṖRO

ṖRO′



 =




ARO 0

ARO′RO ARO′








PRO

PRO′



 . (6.1.12)

Applying Theorem 3.1 yields the following corollary:

Corollary 3.2. Consider any Markov process in which the probability density

state vector evolves according to (6.1.12). Let J be a finite subset of the index

set RO. If for ε > 0, and tf ≥ 0

1T exp




AJtf 0

1TARO′Jtf 0








PJ(0)

1TPRO′(0)



 ≥ 1− ε, (6.1.13)

then

exp(AJtf )PJ(0) ≤ PJ(tf ), and (6.1.14)

|PJ(tf )− exp(AJtf )PJ(0)|1 ≤ ε. (6.1.15)

The proof of Corollary 3.2 follows directly from Theorem 3.1 where I1 = RO

and I2 = RO′. To illustrate the underlying intuition of Corollary 3.2, Fig. 6.1(top)

illustrates a two dimensional state lattice for a two chemical reacting system.

The system begins with an initial configuration xu at time t = 0, and we are

interested in calculating the probability that the system has configuration, xy, at

the time t = tf ≥ 0. The configuration set can be separated into three disjoint

subsets: the unreachable region, XR′ ; the unobservable region, XO′ ; and the

reachable/observable region XRO. Using the OAFSP, we remove the XR′ from
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the system and aggregate XO′ to a single point, as shown in Fig. 6.1(bottom

left). We then project XRO onto a finite configuration subset XJ . The projected

system is shown in Fig. 6.1(bottom right), where the subsets XJ ′ and XRO′ have

each been aggregated to a single point. Because the projected system is finite

dimensional, its solution can be computed using the matrix exponential function

or by using a standard ODE solver. Theorem 2.1 shows that as the subset XJ

increases, fewer trajectories are lost to XJ ′ and the probability of remaining in

XJ ∪ XRO′ increases. Corollary 3.2 shows that the probability that the system

is currently in XJ ∪ XRO′ must be at least as large as the probability that the

system has been in XJ ∪XRO′ for all times t = 0 to t = tf .

The OA-FSP Algorithm

The results above and our previous work on the FSP [67] suggest a systematic

procedure for solving the chemical kinetic problem as posed in (6.1.1). This algo-

rithm, which we refer to as the Observability Aggregated FSP algorithm, can be

stated as follows:

Step 0 Define reaction propensities and stoichiometry.
Choose the initial pdv, P(0).
Choose the final time of interest, tf .
Specify the total acceptable error, ε > 0.
Define configuration subsets: XRO and XRO′ .
Choose initial finite index set, Jo ⊆ RO.
Initialize a counter, i = 0.

Step 1 Use propensities and stoichiometry to compute

ΓJi = 1T exp

[
AJtf 0

1TARO′Jtf 0

] [
PJi(0)

1TPRO′(0)

]
.

Step 2 If ΓJi ≥ 1− ε, Stop.
exp(AJitf )PJi(0) is within ε1 error from PJi(tf ).

Step 3 Add more configurations to find XJi+1 .
Increment i and return to Step 1.
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Figure 6.1: Top: schematic of a two dimensional integer lattice representing the
configuration set of a two species chemical reaction. Each configuration point [a,b]
is represented by a circle and transitions (reactions) are shown by the connecting
arrows. Bottom: aggregation of the unobservable configuration subset (left), and
projection of the observable/reachable configuration subset onto a finite configu-
ration subset: XJ ∈ XRO (right).
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Chapter 7

The Slow Manifold FSP
(SM-FSP)

In many biological models, certain reactions occur much faster and more fre-

quently than others. For KMC algorithms like the SSA, the majority of the

simulated reactions correspond to those with large propensities. In the case of the

CME or its projection, this separation of time scales results in numerical stiffness.

As discussed in Section 3.1.1, there has been significant progress in developing

approximate KMC algorithms to deal with these concerns. In these, the fast dy-

namics are essentially averaged, and the slow dynamics are simulated assuming

the fast dynamics have instantaneously reached thermal equilibrium. We have

shown that the FSP algorithm is also amenable to time-partitioning approxima-

tion schemes that speed up computation at a small cost to the accuracy [78, 71].

In those papers, the time scale separation is carried out using a singular pertur-

bation approach similar to that in [32]. In the control community, perturbation

methods have also had long use as described in [55]. This chapter takes a linear

systems theory approach to such problems.

In the configuration space, some subsets of configuration points are often in-
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terconnected1 by fast reactions and separated from each other by slow reactions.

One such example is the 4-configuration Markov process illustrated in Fig. 7.1(a),

where the fast reactions (solid lines) have propensities equal to one, and the slow

reactions (dashed lines) have propensities equal to ε. The master equation for

this particular process has the generator

A =





−r − ε r ε 0

r −r − ε 0 ε

ε 0 −r − ε r

0 ε r −r − ε





.

If one groups together the fast interconnected configurations (possibly requiring a

permutation of the configuration set), one can separate the system into fast and

slow parts: A = H+εG, where H is block diagonal with each block representing a

fast interconnected configuration set. For the schematic in Fig. 7.1 this separation

gives

H =




H1 0

0 H2



 =





−r r 0 0

r −r 0 0

0 0 −r r

0 0 r −r





,

1Here the term “interconnected” is used to mean that the configurations form a non-separable
Markov process. Any finite dimensional interconnected system can readily be shown to have a
simple eigenvalue at zero.

47



and

εG =





−ε 0 ε 0

0 −ε 0 ε

ε 0 −ε 0

0 ε 0 −ε





.

It is easily seen that each Hi is the generator matrix for the ith fast cluster, and

εG is the generator matrix of the reactions that take the system from one cluster

to another.

For an N dimensional finite state projection with m fast interconnected con-

figuration sets, the master equation can be written

Ṗ(t) = (H + εG)P(t), (7.0.1)

where H can be written H = diag{H1,H2, . . . ,Hm}. Because they are generators,

each Hi has a single eigenvalue equal to zero, and its corresponding left and right

eigenvectors are ui = 1T and vi, respectively. We define the following matrices.

U =





u1 0 . . .

0 u2 . . .

...
...

. . .




, and V =





v1 0 . . .

0 v2 . . .

...
...

. . .




.

Let S = [ V R ] be a square matrix in which the columns of R are the remaining

N −m right eigenvectors of H. The inverse of S is given by S−1 =

[
UT LT

]T
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Figure 7.1: (a) A four configuration Markov process that undergoes reactions
on two different time scales. For r , ε, the fast reactions are represented by
solid lines, and slow reactions are represented by dashed lines. There are two
sets of strongly connected configurations: J1 = {1, 2} and J2 = {3, 4}. The fast
reactions form two infinitesimal generators, H1 and H2, and the slow reactions
form a single generator for the whole system, εG. (b) In the reduced model, each
fast interconnected set becomes a single configuration. The strength of the slow
reactions from the ith to the jth set is given by εujGJjJivi, where ui and vi are
the left and right zero-eigenvectors of Hi, and GJjJi is the sub-matrix of G with
columns corresponding to Ji and rows corresponding to Jj.
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such that we have the following similarity transformation for H:

S−1HS =




0 0

0 Λ



 , Λ = diag(λm+1, . . . , λN).

where the first m diagonal elements correspond to the zero eigenvalues of the Hi

blocks. With out loss of generality, the non-zero eigenvalues of H can be ordered

so that 0 > Re{λm+1} ≥ Re{λm+2}, . . . ≥ Re{λN}. Applying the coordinate

transformation

[
yT

1 (t) yT
2 (t)

]T

= S−1P(t), (7.0.1) becomes:




ẏ1(t)

ẏ2(t)



 =




εUGV εUGR

εLGV Q








y1(t)

y2(t)



 , (7.0.2)

where the matrix Q = Λ + εLGR.

There are two important observations to make regarding this transformed sys-

tem. First, the matrix UGV is itself a generator for a Markov process in that

it satisfies the two sufficient conditions: (i) its columns sum to zero, and (ii) its

off-diagonal elements are non-negative. To show that, note that 1TU = 1T and

therefore 1TUG = 1TG = 0. Furthermore,

[UGV]ij = uiGJiJjvj,

where ui and vj are non-negative for any (i, j) and the sub-matrix GJiJj is non-

negative for any i -= j. Hence the off-diagonal elements of UGV are indeed non-

negative. The second observation that one can make is that for ε . |Re{λm+1}|,

linear perturbation theory assures us that the matrix Q is Hurwitz, and its eigen-

values are close to {λm+1, λm+2, . . . , λN}. In particular if we let λ̃ denote the real
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part of the least stable eigenvalue of Q, we know that λ̃ ≈ Re{λm+1}.

With these observations in mind, one can now examine the forced dynamics

of y2(t):

ẏ2(t) = εLGVy1(t) + Qy2(t),

which has a solution comprised of a zero-state and a zero-input response:

y2(t) = yzs
2 (t) + yzi

2 (t).

Because Q is Hurwitz, with eigenvalues all having real parts less than or equal

to λ̃, the zero-input response, yzi
2 (t), is bounded by the exponentially decaying

expression. Therefore, there exists a constant K1 such that

∣∣yzi
2 (t)

∣∣
1
≤ K1 exp(λ̃t), ∀t ≥ 0.

By the definition of our transformation

|y1(t)|1 = |UP(t)|1 = 1,

and |LGVy1(t)|1 is bounded. Since Q is Hurwitz and the input is O(ε), we are

guaranteed that the zero-state solution, yzs
2 (t) satisfies

|yzs
2 (t)|1 = O(ε), ∀t ≥ 0.

Combining the two solutions, we have the following bounds on y2(t)

|y2(t)|1 ≤ K1 exp(λ̃t) + O(ε), (7.0.3)
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for all times t ≥ 0.

The forced dynamics of y1(t) given by the

ẏ1(t) = εUGVy1(t) + εUGRy2(t),

has a solution at the chosen final time tf :

y1(tf ) = exp(εUGVtf )y1(0) + ε

∫ tf

0

exp(εUGV(tf − τ))UGRy2(τ)dτ. (7.0.4)

Note that since UGV is a infinitesimal generator of a Markov process, every

column of exp(UGVt) has a sum of exactly one for any t ≥ 0, and

||exp(εUGV(t− τ))||1 = 1,

for all ε ≥ 0 and t ≥ τ . Therefore

|y1(tf )− exp(εUGVtf )y1(0)|1 ≤ ε

∫ tf

0

|UGRy2(τ)|1 dτ.

Combining this with (7.0.3) and defining the constant K2 = K1 ||UGR||1, one

obtains the following bound on the error of y1 at t = tf :

|y1(tf )− exp(εUGVtf )y1(0)|1 ≤ ε

∫ tf

0

K2 exp(λ̃τ) + O(ε)dτ

≤ εK2
1

|λ̃|
+ tfO(ε2).

Therefore, for any fixed tf ≥ 0,

|y1(tf )− exp(εUGVtf )y1(0)|1 = O(ε). (7.0.5)
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Combining (7.0.3) and (7.0.5) gives the following bounds on the approximation

error:

∣∣∣∣∣∣∣




y1(tf )

y2(tf )



−




exp(εUGVtf )y1(0)

0





∣∣∣∣∣∣∣
1

≤ K1 exp(λ̃tf ) + O(ε).

Substituting the initial condition,




y1(0)

y2(0)



 = S−1P(0) =




UP(0)

LP(0)



 ,

and performing the reverse similarity transformation, P(tf ) = Vy1(tf )+Ry2(tf ),

yields:

|P(tf )−V exp(εUGVtf )UP(0)|1 ≤ K1 ||R||1 |LP(0)|1 exp(λ̃tf ) + O(ε).

Thus, this reduced model differs from the full system by at most an exponentially

decreasing transient term plus a term of order ε.

In the toy example in Fig. 7.1, the blocks H1 and H2 were identical, with

eigenvalues of zero and −2r. The left and right eigenvectors for the zero eigenvalue

are ui =

[
1 1

]
and vT

i =

[
1/2 1/2

]
, respectively. The generator for the

reduced system (as shown in Fig. 7.1(b)) is

UGV =




u1GJ1v1 u1GJ1J2v2

u2GJ2J1v1 u2GJ2v2



 ,

where the the index set for the first and second blocks are J1 = {1, 2} and J2 =

{3, 4}, respectively.
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Applying this model reduction approach to the original FSP algorithm yields

the following algorithm which we name the Slow-Manifold FSP algorithm:

The Slow-Manifold FSP Algorithm

Inputs Propensities and stoichiometries for all reactions.
Initial probability density vector, P(0).
Final time of interest, tf .
Target FSP error, δ > 0.

Step 0 Choose initial set of states, XJo , for the FSP.
Initialize a counter, k = 0.

Step 1 Use fast reactions connecting states within XJk
to

form HJk
= diag{H1, . . . ,Hm}.

Use remaining reactions to form GJk
.

Step 2 Find eigenvalues and vectors of each Hi and
build matrices U and V.

Estimate ε = ||GJk
V||1 / |λm+1|.

Compute γ = |SLP(0)|1 exp(λm+1tf ).
Step 3 Find PFSP

Jk
(tf ) = V exp(UGJk

Vtf )UPJk
(0)

and compute ΓJk
= 1TPFSP

Jk
(tf ).

Step 4 If ΓJk
≥ 1− δ, Stop.

PFSP
Jk

(tf ) is within δ + γ + O(ε) of PJk
(tf ).

Step 5 Add more states to find XJk+1
.

Increment k and return to Step 1.

Here, the non-traditional error estimate notation δ + γ +O(ε) is used to mean

the following. If δ is largest, then the dominant error is most likely the result

of the projection, and the slow manifold truncation error can be ignored. If γ

is largest then the time tf is too short for the transient dynamics to sufficiently

diminish and additional eigenvectors must be included in the truncation. Finally,

if ε is larger than δ and γ, then there is insufficient separation between the slow

and fast dynamics and an alternative reduction scheme may be required.

The next section illustrates the slow manifold approach on a simple example

and later Chapters 14 applies this method to a toy model of the heat shock
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response in E. coli. For a third example, the reader is encouraged to see [71].

7.1 Simple SM-FSP Example

This section illustrates the Slow Manifold FSP solution technique with a very

simple example. The system has two weakly coupled sets of three different config-

urations each. The master equation for the fast reactions, H, is a block diagonal

matrix:

H =




H1 0

0 H2,



 , (7.1.1)

with blocks

H1 =





−4 2 4

1 −2 0

3 0 −4




and H2 =





−6 3 2

2 −3 0

4 0 −2




. (7.1.2)

As generators, the blocks H1 and H2 have one zero eigenvalue apiece, with corre-

sponding right eigenvectors v1 = (4, 2, 3) and v2 = (3, 2, 6). From these eigenvec-

tors, one can assemble the matrix V,

V =




4/9 2/9 3/9 0 0 0

0 0 0 3/11 2/11 6/11





T

. (7.1.3)

The matrix composed of left eigenvectors of H1 and H2 is similarly used to form

U,

U =




1 1 1 0 0 0

0 0 0 1 1 1



 . (7.1.4)
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The generator of the slow reactions that couples the fast configurations sets to

one another is

G =





−8 0 0 5 3 2

0 −5 0 2 3 1

0 0 −12 4 6 2

4 2 3 −11 0 0

1 2 5 0 −12 0

3 1 4 0 0 −5





. (7.1.5)

To get the equations for the slowly changing variables (7.0.4), calculate

UGV =




−87/11 78/11

29/3 −26/3



 . (7.1.6)

from which one can obtain the approximate solution as

P(t) = V exp(εUGVt)UP(0). (7.1.7)

As an illustration of the effectiveness of this reduction, Fig. 7.2 shows components

P1(t) and P2(t) of the solution above for the initial condition Pi(0) = δ2i, and

ε = 0.01. One can see that after a short transient time has elapsed, there is

an excellent agreement between the exact and the approximate solution to this

example problem.

As a second example, we have considered a large set of randomly generated

master equations, each with a near block-diagonal structure. For each system,

we have and compared found the exact and the slow manifold solutions. Figure

7.3 shows that the approximation error is indeed strongly controlled by the small

parameter ε.
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Figure 7.2: Comparison of the approximate and the exact solution to the master
equation in Section 7.1. The initial probability distribution is Pi(0) = δ2i. The
transient time is estimated to be T (ε) = ln ε/λ3 = 1.96 for ε = 0.01, and is
denoted by the vertical line on the graph.
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Figure 7.3: 1-norm error in probability distribution for the truncated solution
versus ε. For each value of ε we have randomly generated 50 matrices H and
G, so that every H + εG defines a proper master equation. Each matrix H has
between 2 and 6 blocks and each block has size between 2 and 21. The elements
of H and G are randomly generated from a uniform distribution between 0 and 1.
The probability distributions were calculated after time t = 2T (ε) = 2 log ε/λm+1.
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Chapter 8

The FSP for Non-Sparse Initial
Distributions (NS-FSP)

Although the FSP method is valid for any initial probability distribution,

most examples in the literature so far [67, 66, 68, 14, 78, 71] begin with a specific

known initial configuration; if the system begins in configuration xk, the initial

probability distribution for the CME was written, pi(0) = δik, where δik is the

Kronecker delta. Suppose now that the initial distribution is given not by the

Kronecker delta but by a vector with many non-zero elements. For example,

suppose that the initial distribution is specified by the solution at the end of

a previous time interval. From Theorem 5.0.2, in order for the original FSP

algorithm to converge, one must be able to find a set of states, XJ , that satisfies

the stopping criterion:

|exp(AJtf )PJ(0)|1 ≥ 1− ε.

Since the sum of the FSP solution at tf cannot exceed the sum of the truncated

initial pdv, PJ(0), one must always include at least as many states in the FSP

solution as is required such that |PJ(0)|1 ≥ 1 − ε. For a sparse pdv, such as

that generated by δik, this restriction on the size of the FSP solution is trivial:

J need only include k. However, when the initial pdv has broad support, the
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size of the FSP solution may be much larger and therefore require the inefficient

calculation of very high-dimensional matrix exponentials. Fortunately, one can

use the property of super-positioning guaranteed by the linearity of the FSP to

mitigate this concern and recover some computational efficiency as shown in the

following proposition.

This analysis keeps the indexing notation from the original FSP in Chapter 5,

but also requires an embedding operator, DJ{.} as follows. Given any vector v

and its J indexed sub-vector vJ , the vector DJ {vJ} has the same dimension as v

and its only non-zero entries are the elements of vJ distributed according to the

indexing set J . Also, let the vector ei denote a column vector whose ith element

is one and the rest of whose elements are zero.

Proposition 8.0.1. Superposition of FSP Solutions

Consider any Markov process in which the distribution evolves according to the

linear ODE:

Ṗ(t) = AP(t).

Let γ < 1, η < 1 and tf ≥ 0. If there is an index set I such that:

|PI(0)|1 ≥ γ, (8.0.1)

and if for every i ∈ I, there is a corresponding index set Ji containing i such that

∣∣exp(AJitf )e
i
Ji

∣∣
1
≥ η, (8.0.2)

then,
∑

i∈I

piDJi

{
exp(AJitf )e

i
Ji

}
≤ P(tf ), (8.0.3)
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and ∣∣∣∣∣P(tf )−
∑

i∈I

piDJi

{
exp(AJitf )e

i
Ji

}
∣∣∣∣∣
1

≤ 1− γη. (8.0.4)

Proof. We begin by proving (8.0.3). If we define the index set If =
⋃

i∈I Ji, then

we have the relation,

DIf

{
exp(AIf

tf )PIf
(0)

}
=

∑

i∈If

pi(0)DIf

{
exp(AIf

tf )e
i
If

}
, (8.0.5)

Since I ⊆ If , we are guaranteed that

DIf

{
exp(AIf

tf )PIf
(0)

}
≥

∑

i∈I

pi(0)DIf

{
exp(AIf

tf )e
i
If

}
.

Furthermore, since for every i, Ji ⊆ If and pi(0) ≥ 0, Theorem 5.0.1 guarantees

that,

DIf

{
exp(AIf

tf )PIf
(0)

}
≥

∑

i∈I

pi(0)DJi

{
exp(AJitf )e

i
Ji

}
. (8.0.6)

Furthermore, using the result from Theorem 5.0.1 that exp(AJtf ) is non-negative

for any index set J , and applying conditions (8.0.1) and (8.0.2) yields

∣∣DIf

{
exp(AIf

tf )PIf
(0)

}∣∣
1
≥

∣∣∣∣∣
∑

i∈I

pi(0)DJi

{
exp(AJitf )e

i
Ji

}
∣∣∣∣∣
1

≥ η |PI(0)|1

≥ ηγ. (8.0.7)

61



Theorem 5.0.2 tells us that

DIf

{
exp(AIf

tf )PIf
(0)

}
≤ P(tf ),

and then from Eqn (8.0.6) we show that

∑

i∈I0

pi(0)DJi

{
exp(AJitf )e

i
Ji

}
≤ P(tf ), (8.0.8)

which is Eqn. (8.0.3).

Combining the fact that |P(tf )|1 = 1 and inequality (8.0.7) gives:

∣∣∣∣∣
∑

i∈I

pi(0)DJi

{
exp(AJitf )e

i
Ji

}
∣∣∣∣∣
1

≥
(
|P(tf )|1 − 1

)
+ ηγ. (8.0.9)

Rearranging this result and applying (8.0.8) yields inequality (8.0.4)

∣∣∣∣∣P(tf )−
∑

i∈I

pi(0)DJi

{
exp(AJitf )e

i
Ji

}
∣∣∣∣∣
1

≤ 1− ηγ, (8.0.10)

and completes the proof.

The result of Proposition 8.0.1 now enables one to modify the original FSP

algorithm to better handle situations in which the initial probability distribution

is non-sparse. Before stating this new algorithm, however, it is important to make

a few notes to explain the choice of notation. First, although this algorithm can

be useful on its own, it will be seen below that it is most effective as part of a

multiple time interval solution scheme. For this reason, the initial time is labeled

tk and the final time is labeled tk+1 = tk + τ . Second, the total error of the

current approach is separated into two components, ε = 1 − ηγ, where both γ
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and η are numbers slightly less than 1 and will be considered as independent

inputs to the algorithm. Here γ refers to the required sum of the truncated

probability distribution at tk, and η refers to the relative accuracy requirement for

the solution at tk+1 compared to the accuracy at tk. Third, for added convenience

the notation Ei = DJi

{
exp(AJiτ)ei

Ji

}
denotes the Ji indexed FSP approximation

of the distribution at tk+1 conditioned upon the ith configuration at tk. Each

matrix exponential, exp(AJiτ) provides not only Ei but also approximations to

Ej for every j ∈ Ji. Once these matrix exponentials are computed, one can store

every Ej = DJi

{
exp(AJiτ)ej

Ji

}
and its corresponding index set Jj = Ji that meets

the accuracy requirement |Ej|1 ≥ η. Note that each vector Ei is an approximation

of the ith column of the operator Φ(τ) in Equation 2.0.6, and the one norm error

in this approximation is exactly (1−1TEi). This means we are effectively storing

a few columns of Φ(τ) at a time. These can later be reused to reduce the total

number of matrix computations for a given initial probability distribution P(0).

In addition, one can reuse Φ(τ) for any initial distribution that is supported on

the set for which these columns of Φ(τ) have already been computed. With this

notation, one can now state the following algorithm:

The FSP Algorithm for Non-Sparse Initial PDV’s

Inputs Propensity functions and stoichiometry for all reactions.
Error Parameters, 0 ≤ γ < 1 and 0 ≤ η < 1 .
Initial probability distribution, P(tk), where 1 ≥ |P(tk)|1 ≥ γ.
Length of time interval, τ .

Step 0 Choose a finite set of states, XIk
such that |PIk

(0)|1 ≥ γ.
Initialize a counter, i, as the first element in Ik.
Initialize the FSP solution index set: If = {i}.
Initialize the FSP solution summation to zero: PFSP

If
(tf ) = 0.

Step 1 If Ei has not already been calculated:

63



Use original FSP algorithm to find Ji and exp(AJiτ) such
that

∣∣exp(AJiτ)ei
Ji

∣∣
1
≥ η.

For every j ∈ Ji, if
∣∣exp(AJitf )e

j
Ji

∣∣
1
≥ η, then record

Ej = DJi

{
exp(AJitf )e

j
Ji

}
and Jj = Ji.

Step 2 Update the FSP solution index set: If = If

⋃
Ji.

Update the FSP solution summation: PFSP
If

= PFSP
If

+ piEi.

Step 3 If i is the last element in I0, Stop.

DIf

{
PFSP

If
(tf )

}
approximates P(tf ) to within ε = 1− γη.

Step 4 Increment i to the next element in I0 and return to Step 1.

As discussed above in Sections 5.3 and 5.4, there may be many choices for

initializing and expanding the projection during the call to the FSP algorithm

in Step 1. Here, the initial projection is chosen using a few SSA runs only on

the first time that Step 1 is executed, but the initial projections for subsequent

executions of Step 1 are found a little differently. In the previous step, we already

computed a set XJi that is sufficient for an initial configuration xi, and we now

wish to find a projection that is sufficient for a different initial configuration xj.

As a first guess for XJj , we take the set XJi and translate it by the amount

xj − xi. In some cases, this may lead to unrealistic choices for the initial set,

such as negative populations, but these are unreachable configurations that are

automatically removed from the configuration set. Once this initial projection has

been chosen, the expansion routine is the same as above in Section 5.4.

These alterations in the FSP algorithm enable one to handle problems in which

the initial probability density vector is not sparse. On its own, this may be

convenient when one wishes to study systems that begin somewhere within a

range of possible initial configurations. However, as the next chapter illustrates,

the non-sparse FSP algorithm has its greatest use when it is integrated into a
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multiple time interval FSP algorithm.
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Chapter 9

The Multiple Time Interval FSP
Method (MTI-FSP)

Suppose that one requires that the FSP solution be precise to a 1-norm error

of ε for the entire time interval (0, tf ). This requires that the system remains with

probability (1-ε) within a finite set XJ for all times t ∈ (0, tf ). One can envision

many simple cases where such a restriction can require an exorbitantly large space

XJ . Suppose that the system begins with an initial condition at t = 0 far from the

support of the distribution at the later time t6 as illustrated in Fig. 9.1a. In this

case the probability distribution is likely to evolve along some path connecting the

initial condition to the final solution. To achieve acceptable accuracy at all times,

the projection region must contain not only the initial condition and the final

solution, but also every point likely to be reached during the intervening time. In

such a circumstance, it can help to break the time interval into pieces and require

only that the FSP criteria are satisfied only during each sub-interval. In effect, one

seeks a changing projection space that follows the support of the distribution as

it evolves. To do this, one can utilize the linearity and time invariance properties

of the chemical master equation.

Suppose the system starts with a known initial probability distribution, P(0),
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Figure 9.1: Schematic of the Multiple Time Interval FSP method. (a) We are given
a Markov process that begins at a known initial point in the configuration space.
As the probability distribution evolves, it follows a long path in the configuration
space such that at time t6 the distribution is supported in a region far from
the initial condition. (b) In order to find a sufficiently accurate FSP solution
for all times in the interval [0, 6τ ], the FSP must include not only the initial
condition and the final distribution, but also all points along the path. (c) To
save computational effort, one can discretize the time interval into smaller intervals
and find overlapping projections that need only satisfy the accuracy requirements
during those shorter periods of time. Here the final distribution of each time
interval (shown in blue) becomes the initial distribution for the next time interval
(shown in red). (d) The end result is a discrete map taking the distribution from
one instant in time to the next.
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and one wishes to approximate the solution to the CME in k time intervals of

equal length τ . Using the algorithm in Chapter 8, one can specify a positive

η < 1 and require that transition vectors {Ei} satisfy |Ei|1 ≥ η for all i. For the

first time interval, suppose that we simply specify γ1 = η and use the non-sparse

FSP algorithm (from Chapter 8) to find an approximation of the distribution at

t1 = τ such that

0 ≤ DI1

{
PFSP

I1 (t1)
}
≤ P(t1) and

∣∣PFSP
I1 (t1)

∣∣
1
≥ γ1η = η2.

For the second time interval, we use PFSP
I1 (t1) as the initial distribution. If we use

the same η, we can save some effort by reusing some of the Ei’s already computed.

However, since our solution at the end of the previous interval has a guaranteed

sum of only η2, we must choose a different γ2. A very reasonable choice is simply

to use the guarantee from the previous interval: γ2 = η2. With this choice, we

can again apply the non-sparse FSP algorithm to find an FSP solution at the end

of the second time interval such that

0 ≤ DI2

{
PFSP

I2 (t2)
}
≤ P(t2) and

∣∣PFSP
I2 (t2)

∣∣
1
≥ η3.

Following this example, at each kth step, if we use γk = ηk, then we will recover a

solution such that

0 ≤ DIk

{
PFSP

Ik
(tk)

}
≤ P(tk) and

∣∣PFSP
Ik

(τ)
∣∣
1
≥ ηk+1.

If we apply the fact that |P(tk)|1 = 1, we have

∣∣PFSP
Ik

(τ)
∣∣
1
≥ (|P(tk)|1 − 1) + ηk+1,
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which after some rearranging yields

∣∣P(tk)−DIk

{
PFSP

Ik
(τ)

}∣∣
1
≤ 1− ηk+1.

Suppose that we wish to find a solution that is within ε of the exact solution

of the CME at tf = Kτ . Following the ideas above, we would choose η according

to the relation ε = 1 − ηK+1, or η = (1 − ε)
1

K+1 . This procedure is stated more

formally in the following algorithm.

The Multiple Time Interval FSP Algorithm (MTI-FSP)

Inputs Propensity functions and stoichiometry for all reactions.
Initial probability distribution, P(t0).
Final time of interest, tf .
Total error, ε > 0.

Step 0 Choose the number of time intervals, K, and calculate τ = tf/K.

Compute the required sum for each Ei, η = (1− ε)
1

K+1 .
Initialize time step counter: k = 0.
Choose initial time index set, I0, such that |PI0(t0)|1 ≥ η.
Initialize the FSP approximate solution at t0, PFSP

I0 (t0) = PI0(t0).

Step 1 Run the Non-Sparse FSP algorithm with the initial condition PFSP
Ik

(tk),
and error parameters η and γk = ηk+1 and get PFSP

Ik+1
(tk+1).

Step 2 If k + 1 = K, then Stop.
DIK

{
PFSP

IK
(tK)

}
approximates PIk

(tf ) to within ε.

Step 3 Increment k and return to Step 1.

Fig. 9.1 illustrates the possible benefit obtained from this modification to the

FSP algorithm. Suppose that one is interested in finding the distribution at

time t = 6τ of a Markov process that begins in the known initial configuration

represented by the black dot. Even though the distributions at each of the times

{0, τ, 2τ, . . . , 6τ} are supported on only a small portion of the configuration space,
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the one shot FSP solution must include the whole region of the configuration space

that is swept by the distribution between 0 and 6τ (see Fig. 9.1b). Therefore,

the one step FSP algorithm requires a large matrix exponential computation.

By subdividing the full interval into six subintervals as shown in Fig. 9.1c, one

requires more exponential computations, but since each of these computations

will be much smaller, the total computational effort may be much less. Recently,

Burrage et. al have utilized a similar approach to solve the FSP problem over

a set of small time intervals in their Krylov-based FSP algorithm [14]. Their

approach is more efficient than the original FSP in that they no longer solve for

the full operator Φ(tf , t0), but instead restrict their efforts to directly computing

PFSP (tf ) = Φ(tf , t0)P(t0). The approach here is far different. Rather than

sacrifice the original FSP’s ability to handle different initial distributions, as must

be done in order to use the Krylov reductions in [14], we instead exploit this

flexibility. By restricting all time intervals to the same length, τ , time invariance

of the CME guarantees that much of Φ(τ) = Φ(t + τ, t) can be reused from one

time interval to the next.

In order to estimate the computational complexity of the new algorithm, one

must make make a few assumptions. First, assume that in every call to the original

FSP algorithm, the initially chosen projection XJ0 is sufficient to meet the desired

accuracy tolerance. This allows one to analyze the complexity separate from the

choice of FSP initialization and expansion routines. Let n denote the number of

configurations necessary to solve the FSP in a single time interval. The cost of

this solution is dominated by the matrix exponential computation on the order

of O(n3). Suppose that the current multiple time interval version of the FSP can

solve the same problem with K time intervals while using z matrix exponential
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computations of equal size s. Furthermore, assume that the sets {XIk
} needed

to support the probability distribution at the beginning of each time interval all

have exactly w elements. In this case the cost of computing the z exponentials is

O(zs3). The remaining overhead cost is broken into two terms: first, the cost of

storing the n columns of Φ(τ) each with s non-zero elements is O(ns). Second, the

cost of all K matrix-vector updates is dominated by the cost of multiplying a w×s

matrix by a w element vector or O(Ksw). The total complexity of the Multiple

Time Interval FSP algorithm is then O(zs3) + O(ns) + O(Ksw). As K increases,

smaller matrices will be necessary, but the rate at which s decreases will vary from

one chemical system to the next. In general, for a small number of time intervals,

s is large and the total cost is dominated by the exponential computations (first

term). Conversely, for a large number of time intervals, the cost is dominated by

the overhead (second two terms). Below, Chapter 14 illustrates the use of this

MTI-FSP algorithm through a simplified model of the heat shock response in E.

coli.

9.1 The FSP τ Leap Approach (τ-FSP)

The previous section showed how time-scale based system partitioning meth-

ods can significantly speed up the computation of the FSP. The benefit of such

an approach is that one only need consider a part of the configuration space dur-

ing each time step. This section shows how this approach can be extended by

incorporating some ideas of time leaping. The τ leaping methods discussed in

Section 3.1.2 above make the assumption that many reactions may occur in a pe-

riod of time without causing significant changes in the propensity functions. This

assumption enables the one to make two related assumptions: first, that each
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reaction channel can be considered independently of the others, and second, that

each reaction channel can be regarded as a simple pure birth, or Poisson, process.

In a Monte Carlo simulation scheme, this assumption enables the researcher to

approximate the number of times each reaction fires over a given amount of time.

Recall that the SSA is simply a realization of the Chemical Master Equation,

which is an infinite set of ODEs describing the evolution of probabilities for every

possible population configuration. It is reasonable for one to expect that any

valid approximation of the SSA must correspond to similar approximation to

the Chemical Master Equation. For example, the system partitioning methods

reviewed in 3.1.1 is essentially a Monte Carlo analysis solution of the slow manifold

of the CME as discussed in Chapter 7. Similarly, this section shows how the

assumption of τ leaping effectively transforms the continuous time CME into an

approximate discrete time system.

The original CME is given by the infinite dimensional ODE:

Ṗ(t) = AP(t).

As stated above, this system has the solution:

P(t + τ) = Φ(τ)P(t).

Because the system obeys the rules of superposition, one can consider evolution of

the probability from each configuration of the initial distribution independently

(see also Chapter 8):

P(t + τ) =
∞∑

i=1

Ei(τ)Pi(t),

where Ei is the ith column of the state transition matrix Φ. If the τ leap assump-
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tion holds, and the propensity functions for each of the M reaction channels do

not change from their initial value over a time step of length τ , then the number

of times the µth reaction channel fires is a Poisson random variable:

Pk̃µ,i(k) =






λk
µ,ie

−λµ,i

k! ; for k ≥ 0

0 ; for k < 0





,

where λµ,i = aµ(xi)τ is the propensity function of the µth reaction evaluated at

the ith configuration. The probability of transformation from i to j in the time

period τ can be approximated by the sum:

Φji(τ) ≈ Φ̃ji(τ) =
∑ (aµ(xi)τ)k e−aµ(xi)τ

k!
for all (k, µ) such that xj = xi + kνµ.

(9.1.1)

In practice, one will typically step through time using the algorithm in the previous

section and compute only the columns of Φ̃ that are required for the probability

distribution at the beginning of each time step. For the readers’ conveniences,

this algorithm can be summarized as follows:

The τ-FSP Algorithm

Inputs Propensity functions and stoichiometry for all reactions.
Initial probability distribution, P(t0).
Final time of interest, tf .
Total error, ε > 0.

Step 0 Choose the number of time intervals, K, and calculate τ = tf/K.

Compute the required sum for each Φ̃i ≈ Ei, η = (1− ε)
1

K+1 .
Initialize time step counter: k = 0.
Choose initial time index set, I0, such that |PI0(t0)|1 ≥ η.
Initialize the FSP approximate solution at t0, PFSP

I0 (t0) = PI0(t0).

Step 1 Run the Non-Sparse FSP algorithm with the initial condition PFSP
Ik

(tk),
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and error parameters η and γk = ηk+1 and get PFSP
Ik+1

(tk+1).

Instead of computing matrix exponentials to get E, the columns of Φ̃
are estimated using the Poisson τ leap assumption (9.1.1).

Step 2 If k + 1 = K, then Stop.
DIK

{
PFSP

IK
(tK)

}
approximates P̃Ik

(tf ) to within ε, where P̃(tf ) is the
exact solution to the master equation under τ leap assumption.

Step 3 Increment k and return to Step 1.

The end result is a new algorithm that approximates the time leaps as depicted

in Fig. 9.1d without actually computing any of the matrix exponentials. The main

two differences between this algorithm and that in the previous section are (i) the

approximate Φ̃ rather than E is used as the probability transformation operator,

and (ii) the error is given in terms of the difference between the acquired approx-

imation and the exact solution of an artificial process that has been restricted to

obey the τ leap assumption. As a result, this approximation is only as valid as

the τ leap assumption allows. For processes in which the propensity functions are

constant, the two algorithms are equivalent, and the current approach may be far

more efficient. For processes in which the propensity functions change rapidly,

this algorithm will introduce significant error.
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Chapter 10

Interpolation Based FSP
Reduction (I-FSP)

In the previous reductions schemes, knowledge of the system is exploited to

provide smaller order models while maintaining known bounds on the error of the

achieved approximation. This chapter presents a simpler reduction scheme, which

can be very effective, but which no longer provides accuracy guarantees.

Suppose that one wishes to find a vector q(t) ∈ Rm, for some known interpola-

tion operator Ξ ∈ Rn×m such that Ξq(t) provides an approximation of P(t). We

assume that q(t) has linear dynamics and can be expressed by q(t) = exp(At)q(0)

for some choice of q(0) and A, and we pose the following problem

min
q(0),A

|P(t)−Ξ exp(At)q(0)| .

Performing a Taylor series expansion, the cost of the minimization becomes

∣∣(P(0)−Ξq(0)) + (AP(0)−ΞAq(0)) t + O(t2)
∣∣ .

Minimizing the first term in the least squares sense yields q(0) = Ξ−LP(0), and

minimizing the second gives A = Ξ−LAΞ, where Ξ−L is the left inverse of Ξ.
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As an aside, with the correct choice of Ξ, all previous projections shown here

can also be derived with this same formalism. The original FSP uses ΞFSP = IXJ ;

the original OAFSP uses the projection ΞOAFSP =

[
IJX DRO′{1T

RO′}
]
; in the

standard controllability or observability reduction, the columns of Ξ form a basis

for the range of the minimal model; and in the multiple time scale reduction, Ξ is

simply the matrix of right eigenvectors: V. In the above minimization, problem

one could also explore Krylov based methods of simultaneously choosing Ξ as well

as A and q(0), but these are left to future work.

To illustrate this interpolation based projection technique, we first consider a

Markov process evolving along a one dimensional lattice such as that involving

a single chemically reacting species, a. We begin with the full lattice, which we

project to a finite subset as illustrated in Fig. 10.1(a,b). We choose a smaller

subset of interpolation points as shown in Fig. 10.1(c). When the number of a

molecules is small, we need greater precision and these points must be closer to-

gether, but when the number is larger, a coarser grid is more likely to suffice.

Each two consecutive values qi(t) and qi+1(t) approximate the probability dis-

tribution at the points indexed by integers Li and Ri, respectively. We assume

that the probability distribution varies linearly between these two points; and we

interpolate the distribution for any intervening point according to:

pj(t) =

[ (
1− j−Li

Ri−Li

)
j−Li

Ri−Li

]



qi(t)

qi+1(t)



 .

From this formulation, if we use m nodes to represent a distribution with n ele-
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ments, we can obtain the projection operator, Ξ ∈ Rn×m as

[Ξji, Ξj(i+1)] =

[(
1− j − Li

Ri − Li

)
,

j − Li

Ri − Li

]
,

for all j.

As an example, suppose that the 1 dimension lattice in Fig. 10.1 represents a

one species chemical reaction with the following two reactions

x → 2x, and 2x → x,

where the propensity of the first reaction is a1(x) = 3x, the propensity of the

second is a2(x) = x(x − 1), and the initial condition is xt=0 = 1. By choosing to

include only the first ten configurations of the system J = {1, 2, . . . , 10}, one can

obtain the finite state projection ṖFSP
J (t) = AJPFSP

J (t), where the elements of A

are given by

Aij =






−j2 − 2j for i = j

3j for i = j + 1

j2 − j for i = j − 1






.

and the initial distributions is given as PFSP
J (0) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T . One

may choose to the interpolate the distribution among the points in the smaller 6
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element set {1, 2, 4, 6, 8, 10} which corresponds to the using the projection operator

Ξ =





1 0 0 0 0 0

0 1 0 0 0 0

0 0.5 0.5 0 0 0

0 0 1 0 0 0

0 0 0.5 0.5 0 0

0 0 0 1 0 0

0 0 0 0.5 0.5 0

0 0 0 0 1 0

0 0 0 0 0.5 0.5

0 0 0 0 0 1





.

Applying the reduction yields

A = Ξ−LAΞ

≈





−3.0000 2.0000 0 0 0 0

2.4853 −5.2965 5.8865 −2.8133 0.9546 −0.3091

−0.4264 3.4823 −8.4323 14.0664 −4.7729 1.5454

0.0732 −0.5976 4.7073 −16.5854 27.6829 −8.9634

−0.0126 0.1030 −0.8116 5.4458 −28.3246 52.2351

0.0025 −0.0206 0.1623 −1.0892 6.2649 −79.4470





,

and q(0) = Ξ−LPFSP
J (0) = [1, 0, 0, 0, 0, 0]. Fig. 10.2 shows the probability distri-

bution at tf = 1s for the 10-state FSP solution, PFSP
J (tf ) = exp(AJtf )PJ(0), as

well as the reduced 6-state solution, PI
J(tf ) = Ξ exp(Atf )q(0). From the figure,

one can see that the two solutions are in relatively good agreement.
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For a lattice of two or more dimensions, the process is essentially the same, but

the interpolation is slightly more involved and must be approached with more care.

For the case of two species, each point (aj, bj) on the lattice is interpolated be-

tween the four corners of the mesh rectangle in which that point resides: (Bj, Lj),

(Bj, Rj), (Tj, Lj), (Tj, Rj), where (Bj, Rj) is the grid point to the bottom-right

side of lattice point indexed by j, (Tj, Rj) is the grid point lying to its top-

right side, and so on. The probability at time t at each of these grid points is

given by pBL(j)(t), pBR(j)(t), pTL(j)(t), and pTR(j)(t). In our approximation scheme,

these variables will be approximated by qBL(j)(t), qBR(j)(t), qTL(j)(t), and qTR(j)(t),

whose dynamics evolve in a lower dimensional space than the original system. To

assign an approximation for pj(t) where j is the index of lattice point surrounded

by the mesh rectangle, we interpolate the four computed q variables, i.e.

pj(t) ≈ N (j)qj(t) =





(1− α)(1− β)

α(1− β)

(1− α)β

αβ





T 



qLB(j)(t)

qRB(j)(t)

qLT (j)(t)

qRT (j)(t)





,

where

α =
aj − Lj

Rj − Lj
and β =

bj − Tj

Tj −Bj
.

As in the one dimensional case, these Finite-Element-Method-like “shape func-

tions,” and our chosen enumeration will directly provide the operator Ξ:

[Ξj,LB(j), Ξj,RB(j), Ξj,LT (j), Ξj,RT (j)] = N (j), ∀j.

Below, Chapters 14 and 15 illustrate this reduction method on a few example
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Figure 10.1: One dimensional lattice Markov process. (a) The full infinite dimen-
sional configuration space, (b) The finite state projection, (c) The finite lattice
after it has been broken into 9 lattice elements with ten nodes (shaded). In this
projection distributions at the unshaded points are interpolated from the distri-
butions approximated at the nodes.

gene regulatory networks.

10.1 Non-Linear Shape Functions (NL-FSP)

The previous section considers interpolating the probability distribution from a

subset of configuration points using a linear shape function. For greater reductions

in the model order, one may wish to use a nonlinear shape function to describe the

distribution. For example, suppose that the system can be assumed to maintain a

Poisson, Normal or other common distribution. In such a case, one can write the

distribution in terms of only a few variables. If we approximate the distribution

as being Poisson,

pi(t) ≈
qi(t)

i!
e−q(t), for i = 0, 1, 2, . . . ,

then it is described in terms of a single variable, q(t), which is the mean of the

Poisson distributed random variable. Similarly, for a Gaussian distributed random

variable,

pi(t) ≈
1√
2πq2

exp

(
−(i− q1)2

2q2

)
, for i = 0, 1, 2, . . . ,
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Figure 10.2: The probability distribution for a simple one species chemical reaction
as computed using the original FSP solution scheme as well as an interpolation-
based reduction of the FSP. The distribution is computed at time tf = 1s.

(Bj , Lj)

(Tj , Lj) (Tj , Rj)

(Bj , Rj)

(aj , bj)

Figure 10.3: Interpolation scheme for a two dimensional Markov lattice. Here
the four red corners are the interpolation points which correspond to the ap-
proximate probabilities: qBL(j)(t), qBR(j)(t), qTL(j)(t), and qTR(j)(t). The re-
maining configurations are interpolated from these. For example, the proba-
bility of the magenta point (aj, bj) is approximated as: pj(t) ≈ N (j)qj(t) =
3
20qBL(j)(t) + 2

20qBR(j)(t) + 9
20qTL(j)(t) + 6

20qTR(j)(t).
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the variables q1(t) and q2(t) are the statistical mean and variance, respectively, of

the distribution.

This section seeks to approximate the distribution, P(t) ∈ R∞ as a function

of a vector, q(t) ∈ Rn:

P(t) ≈ Ξ(q(t)),

where Ξ(.) is nonlinear operator on q(t) that maps Rn → R∞. For one dimensional

problems, the time derivative of the approximation can be found by applying the

chain rule:

dΞ(t)

dt
=

dΞ(q(t))

dq(t)

dq(t)

dt

= J(q(t))q̇(t), (10.1.1)

where J(q(t)) is a linear operator that maps q̇(t) from Rn to R∞.

With this approach, one can rewrite the original master equation: Ṗ(t) =

AP(t) with the new lower dimensional non-linear approximate system:

J(q(t))q̇(t) ≈ AΞ(q(t)).

Of course, this approximation cannot be exact as the range of the operator J(q)

is at most dimension n and the range of the operator A may be infinite. However,

one can find an ODE for the evolution of q(t) that satisfies this approximation in

the least squares sense:

q̇(t) = J−L(q(t))AΞ(q(t)).

We will see in the special case below that when P(0) and AP(0) lie within the
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range of Ξ(.) and J(q), respectively, then this approximation can be made exact

for all times. To see this, we must discuss the error of the approximation.

The error in the approximation can be represented by:

ε(t) = P(t)−Ξ(q(t)),

and evolves according to the ODE:

dε(t)

dt
=

d

dt
(P(t)−Ξ(q(t)))

= Ṗ(t)− Ξ̇(q(t))

= AP(t)− J(q(t))q̇(t)

= AP(t)− J(q(t))J−L(q(t))AΞ(q(t)).

Consider the case where the initial distribution lies in the space spanned by Ξ(.),

i.e. there exists a q(0) such that P(0) = Ξ(q(0)). Furthermore, suppose that

AP(0) and therefore AΞ(q(0)) lie in the space spanned by J(q(0)); i.e. there

exists a q̇(0) such that J(q(0))q̇(0) = AP(0). In this case, with the proper choice

of q(0) and q̇(t) = J−L(q(t))AΞ(q(t)),

dε(0)

dt
= AΞ(q(0))− J(q(0))q̇(0)

= 0,

and the approximation will be exact for all t ≥ 0. In other words, the true system

remains in the space spanned by Ξ for all later times. As examples, the next two

subsections consider the special cases in which the Poisson approximation yields

the exact solution to the master equation.
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10.1.1 Poisson counting process

As a simple example, consider the pure birth (Poisson) process, which is char-

acterized by a single reaction ∅
k
→ s1. The generator A for this problem is easy to

write and is simply A = k(−I0 + I1), where I0 is an infinite dimensional identity

matrix and I1 is the an infinite dimensional matrix in which the first sub-diagonal

is all ones and the remaining elements are all zeros. For the Poisson distribution,

Ξi(q) =
qi(t)

i!
e−q(t),

and its derivative with respect to q is easily found to be

Ji =
dΞ

dq
=

qi

i!
e−q

(
i

q
− 1

)
.

The full vector J can be written J = (I0 − I1)Ξ(q), and its left inverse is simply:

J−L = Ξ−L(q)(−I0 + I1)
−1.

Therefore, one can find the simplified ODE for the Poisson process to be:

q̇(t) = J−L(q)AΞ(q)

= Ξ−L(q)(−I0 + I1)
−1k(−I0 + I1)Ξ(q)

= k,

which yields the commonly known expression for the evolution of the mean of the

standard Poisson process:

q(t) = kt + q(0).
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Note that for a Poisson distributed initial condition, P(0) = Ξ(q(0)), the

range of AP(0) and that of J(q(0)) are are both (−I0 + I1)Ξ(q(0)), and the

approximation is exact using the argument outlined in the preceding subsection.

10.1.2 Birth-death process

For a slightly more involved example, consider a process with two simple re-

actions,

∅
k
−→
←−
γ

s1,

representing spontaneous mRNA production and linear degradation. In this ex-

ample, the generator can be written in the form

A = k(−I0 + I1) + γ(−L0 + L1),

where I0 and I1 are as above, L0 is a infinite dimensional diagonal matrix whose

entries are {0, 1, 2, . . .} and L1 is an infinite dimensional matrix whose first super-

diagonal is {1, 2, 3, . . .}.

As for the previous example, one can chose to use a Poisson distribution as

the shape function such that

Ξi(q) =
qi(t)

i!
e−q(t),

and

J−L = Ξ−L(−I0 + I1)
−1.
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In this case, one can find an explicit expression for Ξ−L given by:

Ξ−L =
ΞT

|Ξ|22
.

Thus the ODE for the reduced system can be written as:

q̇ =
1

|Ξ(q)|22
ΞT (q)(−I0 + I1)

−1[k(−I0 + I1) + γ(−L0 + L1)]Ξ(q)

= k +
γ

|Ξ(q)|22
ΞT (q)(−I0 + I1)

−1(−L0 + L1)Ξ(q)

= k − γ

|Ξ(q)|22
ΞT (q)L1Ξ(q),

where we have used the identity

(−I0 + I1)
−1(−L0 + L1) = −L1.

Inserting the definition of Ξ(q) and L1 allows us to rewrite the ODE as:

q̇ = k − γ

∑∞
i=0 ΞiΞi+1(i + 1)∑∞

i=0 ΞiΞi

= k − γ

∑∞
i=0

qiqi+1(i+1)
i!(i+1)!∑∞

i=0
qiqi

i!i!

= k − γq

∑∞
i=0

qiqi

i!i!∑∞
i=0

qiqi

i!i!

= k − γq.

The solution of this system is simply found to be

q(t) =

(
q(0)− k

γ

)
exp(−γt) +

k

γ
,
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which has a steady state value of qss = k
γ .

Consider the case when the distribution at any t = 0 is indeed Poisson with

parameter q(0), such as is the case as when the initial condition is specified as

[mRNA]t=0 = 0. In this case, the ith element of the master equation AP =

k(−I0 + I1) + γ(−L0 + L1) is exactly:

[AP]i =

[
k

(
−qi

i!
+

qi−1

(i− 1)!

)
+ γ

(
−iqi

i!
+

(i + 1)qi+1

(i + 1)!

)]
exp(−q).

This simplifies to:

[AP]i = (k − γq)
−qi

i!

(
i

q
− 1

)
exp(−q),

which is simply

[AP]i = (k − γq)
∂

(
−qi

i! exp(−q)
)

∂q
=

∂Ξi(q)

∂q
(k − γq).

Therefore, in matrix notation we can write

[AP] =
∂Ξ(q)

∂q
(k − γq)

= J(q(t))q̇(t).

For any Poisson distributed initial condition P(0) = Ξ(q(0)), this again satisfies

the condition that AP(0) lies within the range of J(q(0)), and the approximation

is guaranteed to be exact.

It should be mentioned that since the system studied in this section is an

irreducible and recurrent Markov process, it has a unique stationary distribution
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(see for example [85], Chapter 2.12). Therefore, even if this birth-death process

begins with a non-Poisson distribution, it is guaranteed to converge to a Poisson

distribution in the limit of long time. This can also be seen by again referring to

the error bound between the approximation and the true solution:

ε = P−Ξ(q)

ε̇ = Ṗ− Ξ̇(q)

= Ṗ− J(q)q̇

= AP− JJ−LAΞ(q)

= A(ε + Ξ(q))− JJ−LAΞ(q)

= Aε + AΞ(q)− JJ−LAΞ(q).

Furthermore, since AΞ(q) is in the range of J(q), then the vector JJ−LAΞ(q) =

AΞ(q). The ODE for our error reduces to:

ε̇ = Aε.

And since A is stable, we are guaranteed that the error converges to zero.
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Chapter 11

FSP for the Analysis of
Stochastic Switches and
Trajectories

The FSP approach discussed above systematically collapses the infinite state

Markov process into a combination of a truncated finite state process and a single

absorbing “error sink”. The resulting system is finite dimensional and solvable.

The probabilities of the truncated process give a lower bound approximation to

the true CME solution. The probability measure of the error sink gives an exact

computation of the error in this approximation. This error can then be decreased

to reach any non-zero error tolerance through a systematic expansion of projec-

tions known as the FSP algorithm as discussed in Chapters 5.1 and presented in

[67, 69]. However, as illustrated in [70] and presented in this chapter, the “er-

ror” guarantee of the FSP provides more than a simple distance between the FSP

solution and the true solution to the CME. Instead, this important term in the

projection provides a wealth of exact information about the original Markov pro-

cess. From it one can determine the statistical distributions of switch rates and

escape probabilities and also analyze stochastic pathway bifurcation decisions.

Many recent studies have examined switch rates in the context of stochastic
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processes operating at their equilibrium or non-equilibrium steady state distribu-

tions. As a few representative examples, these methods include Transition Path

Sampling [20, 21, 10], Transition Interface Sampling [104, 103], and various ap-

proaches of transition path sampling with multiple interfaces [28, 63, 3, 2, 1]. By

concentrating on trajectories that eventually result in switches and interrupting

the the vast majority trajectories that do not, these approaches are far more effi-

cient than a standard brute force Monte Carlo approach like the SSA. However,

as trajectory based analyses, they are limited by the slow convergence of Monte

Carlo approaches and cannot provide strict accuracy guarantees. In contrast to

these methods, the current study focusses on the transient evolution of probabil-

ity distributions and not on the sampled trajectories of a steady state process.

The results sought in this chapter are not histograms of waiting times between

switches from one large potential well (or metastable state) to another, but are

instead a set of precise upper and lower bounds on the distribution of transition

times between specific states and/or arbitrarily chosen state space regions.

This chapter explores the added information contained in the FSP “error” sink

and presents some of the types of analyses for which this information provides.

Section 11.1 shows how multiple absorbing sinks can be used to effectively analyze

pathway bifurcation decisions in stochastic systems. This analysis, in turn, can be

used to improve the implementation of the original FSP algorithm from [67]–this

result has already appeared briefly in Chapter 5.4 above. Then, Section 11.2 shows

how these sinks can be used to determine some statistical quantities for stochastic

switches, such as switch waiting and return times, introduces two model reductions

to the FSP that can help in the analysis of complex trajectories. Later Chapter

15.1 illustrates how these new approaches can be applied to a stochastic model of
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the genetic toggle switch [31].

As above, let M denote a Markov chain on the configuration set X, such as

that shown in Fig. 11.1a, whose master equation is Ṗ(t) = AP(t), with initial

distribution P(0). Let MJ denote a reduced Markov chain, such as that in Fig.

11.1b, comprised of the configurations indexed by J plus a single absorbing state.

The master equation of MJ is given by




ṖFSP

J (t)

Ġ(t)



 =




AJ 0

−1TAJ 0








PFSP

J (t)

G(t)



 , (11.0.1)

with initial distribution,




PFSP

J (0)

G(0)



 =




PJ(0)

1−
∑

PJ(0)



 .

In previous chapters, the probability lost to the absorbing “error” sink, G(t),

is used primarily as in Theorem 5.0.1 as a means to evaluate the FSP projection in

terms of its accuracy compared to the true CME solution. As a probability of first

transition, however, this “error” term has far more significance than simply the

distance between the approximate and exact solutions of the CME. In particular,

apart from its use as a measure for the quality of approximation, this error term

serves as an exact measure of the rate of first transition from one system region to

another. This term may be used to (i) directly determine the statistical distribu-

tions for stochastic switch rates, escape times, trajectory periods, and trajectory

bifurcations, and (ii) evaluate how likely its is that a system will express certain

behaviors during certain intervals of time.
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11.1 Pathway Bifurcation analysis with the FSP

There are numerous examples in which biological systems decide between ex-

pressing two or more vastly different responses. These decisions occur in devel-

opmental pathways in multicellular organisms as heterogeneous cells divide and

differentiate, in single cell organisms that radically adapt to survive or compete

in changing environments, and even in viruses that must decide to lay dormant

or make copies of themselves and ultimately destroy their host [6]. Many of these

decisions are stochastic in nature, and models and methods are needed to deter-

mine the nature and probability of these decisions. This section shows how the

FSP approach can be adapted to answer some of these questions.

In the original FSP approach, a single absorbing state has been used, whose

probability coincides with the probability that the system has exited the region

XJ . Suppose one wishes to know a little more about how the system has exited

this region. For example in the process in Fig. 11.1a, one may ask:

Problem 1: What is the probability that the first time the system exits XJ

it does so via reaction 1 (rightward horizontal arrow) or via reaction 3 (leftward

diagonal arrow)?

Problem 2: What is the probability distribution for the population of species

s2 when the population of s1 first exceeds a specific threshold, smax
1 ?

These questions can be answered by creating a new Markov process with mul-

tiple absorbing states as shown in Fig. 11.1(c,d). Let M∗
J refer to such a chain

where we have included K different absorbing states. The CME for the two prob-
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s2
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(a)

G

(b)

G1

G3

(c)

G2

G1

(d)

G0

F

Figure 11.1: (a): A Markov chain for a two species chemically reacting system,
M. The process begins in the configuration shaded in grey and undergoes three
reactions: The first reaction ∅ → s1 results in a net gain of one s1 molecule and
is represented by right arrows. The second reaction s1 → ∅ results in a net loss
of one s1 molecule and is represented by a left arrow. The third reaction s1 → s2

results in a loss of one s1 molecule and a gain of one s2 molecule. The dimension
of the Master equation is equal to the total number of configurations in M, and
is too large to solve exactly. (b) In the FSP algorithm a configuration subset,
XJ is chosen and all remaining configurations are projected to a single absorbing
point, G. This results in a small dimensional Markov process, MJ . (c,d) Instead
of considering only a single absorbing point, transitions out of the finite projection
can be sorted as to how they leave the projection space. (c) G1 and G3 absorb
the probability that has leaked out through reactions 1 or 3, respectively. This
information can then be used to analyze the probabilities of certain decisions or
to expand the configuration set in later iterations of the FSP algorithm. (d) Each
Gi absorbs the probability that s1 first exceeds a certain threshold, smax

1 when
s2 = i.
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lems above can be written as:




ṖFSP

J (t)

Ġ(t)



 =




AJ 0

Q 0








PFSP

J (t)

G(t)



 , (11.1.1)

where G = [G0, . . . , GK ]T and the matrix Q is given in Problem 1 by:

Qµi =






aµ(xji)

0

if (xji + νµ) /∈ XJ

Otherwise





,

and in Problem 2 by:

Qki =






∑
aµ(xji)

0

For all ji s.t. (xji)2 = k

and µ s.t. (xji + νµ)1 > smax
1

Otherwise






.

Note the underlying requirement that each ji is an element of the index set J .

Also recall that xj is a population vector–the integer (xj)n is the nth element of

that population vector.

For either problem, the solution of (11.1.1) at a time tf is found by taking the

exponential of the matrix in (11.1.1) and has the form




PFSP

J (t)

G(t)



 =




exp(AJtf ) 0

∫ tf
0 Q exp(AJτ)dτ I








PFSP

J (0)

G(0)



 . (11.1.2)

This solution yields all of the same information as previous projections with re-

gards to the accuracy of PFSP
J (t), but it now provides additional useful knowledge.

Specifically, each Gk(t) gives the cumulative probability distribution at time t that
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the system will have exited from XJ at least once and that that exit transition

will have occurred in the specific manner that was used to define the kth absorbing

state.

Section 5.1 above and [67] show a FSP algorithm that relied on increasing the

set XJ until the solution reaches a certain pre-specified accuracy. This expansion

was performed using the concept of N−step reachability (see Section 5.3), where

each set {XJN} included all configurations that are reachable from XJ0 in N

reactions or fewer. The additional knowledge gained from solving Problems 1

or 2 above is easily incorporated into this algorithm. If most of the probability

measure left via one particular reaction or from one particular region of XJ , it is

reasonable to expand XJ accordingly. Such an approach is far more efficient that

the original FSP algorithm and has been considered in [69] and earlier in Section

5.4.

11.2 Analyzing switch statistics with the FSP

As discussed above, the term G(t) in the equation (11.0.1) for the process MJ

is simply the probability that the system has escaped from XJ at least once in the

time interval [0, t]. With such an expression, it is almost trivial to find quantities

such as median or pth percentile escape times from the set XJ . One need only

find the time t such that G(t) in (11.0.1) is equal to p%. In other words, one finds

t such that

G(t) = 1− |exp(AJt)PJ(0)|1 = 0.01p. (11.2.1)

This can be solved with a relatively simple line search as will be done in the

example of the Gardner switch in Section 15.1. Using a multiple time interval
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(a)

G

(b)

u0

Figure 11.2: Schematic representation for the computation of round trip times for
discrete state Markov processes. (a) A Markov chain M where the system begins
in the shaded circle, and we wish to find the distribution for the time at which the
system first enters then shaded region and then returns to the initial state. (b) A
corresponding Markov process where the top points correspond to states on the
journey from the dark circle to the shaded box, and the bottom circles correspond
to states along the return trip. In this description, the absorbing point G(t)
corresponds to the probability that the system has gone from the initial condition
to the grey box and then back again.

FSP approach such as those explored in [69, 14] and Chapter 9 could significantly

speed up such a search, but this has not been applied in this study.

Alternatively, one may wish to ask not only for escape times, but for the pe-

riods required to complete more complicated trajectories. For example, consider

a Markov chain such as that in Fig. 11.2a. The system begins in the state rep-

resented by the shaded circle, and one wishes to know the distribution for the

time until the system will first visit the region in the grey box and then return
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to the original state. Biologically this may correspond to the probability that a

system will switch from one phenotypical expression to another and then back

again. To solve this problem, one can duplicate the lattice as shown in Fig. 11.2b.

In this description, the top lattice corresponds to states where the system has

never reached the grey box, and the bottom lattice corresponds to states where

the system has first passed through that box. The master equation for this system

is given by: 



Ṗ1
J1

(t)

Ṗ2
J2

(t)

Ġ(t)




=





AJ1 0 0

B2C1 AJ2 0

0 C2 0









P1
J1

(t)

P2
J2

(t)

G(t)




, (11.2.2)

where XJ1 includes every state except those in the grey box, and XJ2 includes
every state except the final destination. The matrix C1 is the output matrix for
the first sub-chain and accounts for transitions that exit the XJ1 (via a transition
into the grey box):

[C1]ik =

8
<

:
wµ(x)

0

for x = kth state in XJ1 , and x + νµ = ith state in the grey box

Otherwise

9
=

; . (11.2.3)

The matrix B2 is the input matrix that maps the outputs of the first sub-chain

to the correct states of the second sub-chain:

[B2]ji =






1

0

for x = jth state in XJ2 , and x = ith state in the grey box

Otherwise





.

(11.2.4)

The probability of the absorbing point, G(t), in this description is now exactly

the probability that the system has completed the return trip in the time interval

[0, t]. This solution scheme requires a higher dimensional problem than the original

problem. However, with the FSP approach from [67], this dimension can be

reduced while maintaining a strict measure of the method’s accuracy.
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11.2.1 Input-output description of connected Markov

chains

Each part of the multiple phase trajectories described above has a common

form:

Ṗi(t) = AiPi(t) + Biui(t)

yi(t) = CiPi(t), (11.2.5)

where ui(t) and yi(t) are the flow of probability into and out of the the ith Markov

sub-chain, respectively, and Pi(t) is the vector of probabilities of the states within

the ith Markov sub-chain. In this description the input matrix Bi shows where

and how the inputs enter into the ith sub-chain, and the output matrix Ci maps

the distribution Pi(t) to the output yi(t). Once each input-output sub-system

has been written in the form of the triplet (Ai,Bi,Ci), one may apply many

standard tools to reduce their orders based upon Hankel singular values (see, for

example, Chapter 4 of [23]). Many of these tools are available as part of the

Robust Control Toolbox in Matlab, and for the examples below, we will apply the

Matlab function balancmr. Upon application of these tools, the reduced system

is then characterized by a lower order triplet (Ãi, B̃i, C̃i), which can be directly

substituted into (11.2.2).

11.2.2 Numerical convolution to compute trajectory

times

So far complex trajectories were analyzed by creating a Markov sub-chain

for each phase of the trajectory and then creating a new, much larger Markov
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chain by connecting these sub-chains in series. This can quickly result in a very

high dimensional problem, which can require excessive memory and/or be very

computationally intensive to solve. As an alternative, one can utilize the linearity

of the system to treat each sub-chain separately and then reconnect them with a

numerical convolution approach. For example, in Fig. 11.2b, one can first consider

the top portion of the chain to find the rate of probability flow into the grey box

as a response to beginning at the initial state u0 at time t = 0. This flow is simply

the response to the initial distribution:

y(τ) = C1 exp(AJ1τ)PJ1(0),

where each element of the vector y(τ) corresponds to the flow into a specific point

in the grey box. This probability flow is then the input to the bottom portion

of the Markov chain. In practice y(τ) is computed using an ODE solver and

then stored at N points logarithmically distributed points between t = 0 and

t = tf . This discrete time signal is then interpolated for use as the forcing term

for a second ODE system describing the bottom portion of the chain. Thus, two

smaller order ODEs are solved rather than a single much larger order system. One

can readily extend this approach to compute the time distributions to complete

more complicated trajectories such as hitting multiple way points or completing

multiple circuits of the same return trip. The next subsection illustrates how such

a convolution based approach can be particularly useful in the computation of

probabilities of complex trajectories.
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11.2.3 Probabilities of Specific Trajectories

In addition to computing the time a system would take to complete a tra-

jectory, one can also compute the probability that a system will exhibit spe-

cific traits at specific instances in time. Define a partial probability density vec-

tor P{Cn}(tn) = P{(XJ0 , t0); (XJ1 , t1); . . . ; (XJn−1 , tn−1)}(tn), as the probability

that the system satisfies the conditions {Cn}:={it begins in the region XJ0 at

t = t0; is later is in the region XJ1 at the time t1 ≥ t0; and so on until it is

finally in the various states of X at the time tn ≥ tn−1}. Note that the vector

P{Cn}(tn) has the same dimension as X. The FSP approach provides a simple

method to compute P{Cn}(tn). This requires the use of an embedding opera-

tor DJ{.} as follows: Given any vector v and its J indexed sub-vector vJ , the

vector DJ {vJ} has the same dimension as v and its only non-zero entries are

the elements of vJ distributed according to the indexing set J . Furthermore, let

Φ(t2−t1) = exp(A(t2−t1)) denote the transition operator that maps distributions

at the time t1 to the corresponding distributions at the later time t2. Finally, let

the vector PJn{Cn}(tn) denote the J-indexed sub-vector of P{Cn}(tn).

Proposition 11.2.1. Using the above notation, the vector P{Cn}(tn) follows the

recursive formula

P{Cn+1}(tn+1) = Φ(tn+1 − tn)DJn {PJn{Cn}(tn)} , (11.2.6)

for all t0 ≤ t1 ≤ . . . ≤ tn+1.

Proof. Let P(tn) be the full probability distribution at tn, which can be separated
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into two parts:

P(tn) = P{Cn}(tn) + P{C ′n}(tn),

where P{Cn}(tn) and P{C ′n}(tn) are the partial distributions at tn that do and do

not satisfy the conditions in {Cn}, respectively. The full distribution distribution

at tn+1 is

P(tn+1) = Φ(tn+1 − tn)P(tn)

= Φ(tn+1 − tn) (P{Cn}(tn) + P{C ′n}(tn))

= Φ(tn+1 − tn)
(
DJnPJn{Cn}(tn) +DJ ′nPJ ′n{Cn}(tn) + P{C ′n}(tn)

)
,

where J ′n denotes the complement of Jn. By definition the partial distribution

Φ(tn+1 − tn)DJnPJn{Cn}(tn) satisfies the conditions {Cn+1}, while the second

and third partial distribution terms Φ(tn+1 − tn)DJ ′nPJ ′n{Cn}(tn) and Φ(tn+1 −

tn)P{C ′n}(tn) do not, and we are left with the final result in (11.2.6).

As a more general form, suppose that the conditions in Cn are that the sys-

tem will be in sets {XJi} not at specific ti’s but at any time during the finite

intervals {Ti = [ai, bi]}. In this case, we let the partial probability density vector

P{Cn}(tn) = P{(XJ0 , T0); (XJ1 , T1); . . . ; (XJn , Tn−1)}(tn) denote the probability

density that the system satisfies the conditions {Cn} that it begins in the region

XJ0 at some t0 ∈ T0, is later in the region XJ1 at some t1 ∈ T1, and so on until it

is finally in the various states of X at a time tn ≥ bn. As above P{Cn}(tn) satisfies

a recursive formula but in a more more general form:
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Proposition 11.2.2. The vector P{Cn}(tn) follows the recursive formula

P{Cn+1}(tn+1) = Φ(tn+1 − an)DJn {PJn{Cn}(an)}+

∫ bn

an

Φ(tn+1 − τ)y(τ)dτ,

(11.2.7)

where y(τ) is given by

y(τ) = DJn{AJn,J ′n exp(AJ ′n(τ − an))PJ ′n{Cn}(an)}.

Proof. Let P(t) be the full probability distribution at t ≥ an, which can be sepa-

rated into two parts:

P(tan) = P{Cn(tan)}+ P{C ′n}(tan),

where P{Cn(tan)} and P{C ′n}(t) are the portions of the distribution that do and

do not satisfy {Cn}, respectively. Furthermore, we can separate P{Cn(tan)} into

two components

P{Cn(tan)} = w(t) +DJ ′n{zJ ′n(t)},

where w(t) is the partial probability distribution that satisfies {Cn} and the addi-

tional condition that the system is in XJn at any time τ ∈ [an, t], and zJn(t) is the

partial distribution where the system satisfies {Cn} and the additional condition

that the system remains in the set XJ ′n for all times τ ∈ [an, t]. Note that ele-

ments of w(t) refer to each of the states in X while zJ ′n(t) refers only to states in

XJ ′n . During the interval [an, bn] the partial distributions w(t) and zJ ′n(t) evolve
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according to the linear system:





ẇJn(t)

ẇJ ′n(t)

żJ ′n(t)




=





AJn AJn,J ′n AJn,J ′n

AJ ′n,Jn AJ ′n 0

0 0 AJ ′n









wJn(t)

wJ ′n(t)

zJ ′n(t)




,

with initial conditions





wJn(an)

wJ ′n(an)

zJ ′n(an)




=





DJn{PJn{Cn}(an)}

0

DJ ′n{PJ ′n{Cn}(an)}




.

Solving this system at t = bn yields:

w(bn) = Φ(bn − an)DJn{PJn{Cn}(an)}

+

∫ bn

an

Φ(bn − τ)D{AJn,J ′n exp(AJ ′n(τ − an))PJ ′n{Cn}(an)}

= Φ(bn − an)DJn{PJn{Cn}(an)}+

∫ bn

an

Φ(bn − τ)y(τ), and

zJ ′n(bn) = exp(AJ ′n(bn − an))PJ ′n{Cn}(an).

The total distribution at time tn+1 can be written as:

P(tn+1) = Φ(tn+1 − bn)P{Cn(tan)}+ Φ(tn+1 − an)P{C ′n}(tan)

= Φ(tn+1 − bn)
(
w(bn) +DJ ′n{zJ ′n(bn)}

)
+ Φ(tn+1 − an)P{C ′n}(tan).

By the definitions of w(t), zJ ′n(bn) and P{C ′n}(tan), only Φ(tn+1−bn)w(bn) satisfies

103



the conditions of {Cn+1}, and

P{Cn+1}(tn+1) = Φ(tn+1 − bn)w(bn)

= Φ(tn+1 − bn)

(
Φ(bn − an)DJn{PJn{Cn}(an)}+

∫ bn

an

Φ(bn − τ)yn(τ)

)

= Φ(tn+1 − an)DJn{PJn{Cn}(an)}+

∫ bn

an

Φ(tn+1 − τ)yn(τ),

thus completing the proof.

Section 15.1 applies the approach and the methods from above in the switch

rate analysis of a stochastic model for Gardner’s genetic toggle switch [31].
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Chapter 12

Sensitivity Analysis and
Identification of Stochastic
Models

As discussed above, the rare and discrete cellular nature of chemical compo-

nents such as genes, RNA molecules, and proteins, can lead to large amounts

of intrinsic noise [60, 27, 95, 44, 76, 29, 51]. This intrinsic noise in gene regu-

latory networks has attracted much recent attention, and it is well established

that different systems will exhibit different noise transmission properties. In some

systems noise can be focussed [77]; in some noise may cause or enhance resonant

fluctuations [57]; some systems may result in stochastic switching [6, 66, 97]; and

in some systems noise may be repressed [22].

So far in this work and in in most previous studies, noise in systems biology

has often been viewed as a computational obstacle to be overcome. If one does

not include it in the model, then one cannot hope to match the behavior of the

actual system. However, in many cases, the inclusion of noise in a model results in

an explosion of computational complexity. The preceding chapters have discussed

many approaches to assist in the modeling of discrete stochastic systems such as

kinetic Monte Carlo algorithms and stochastic differential equation approaches in
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Chapter 3, the linear noise approximation and other moment matching techniques

in Chapter 4, and finite state projection approaches in Chapters 5 through 11. At

present, none of these approaches suffices to handle all systems, and there remains

much work to be done to improve our computational capabilities. However, as

these tools develop, it becomes more possible to overcome the obstacle of intrinsic

noise and gain significant benefits in analytical studies. This chapter shows how

careful consideration of the transmission of noise can lead to a significant amount

of information about the process. By careful sensitivity analysis to determine how

system properties affect noise transmission, this information will in turn enable

one to better identify properties of the system from experimental data.

The next section provides a brief description of a simple sensitivity analysis

approach for stochastic systems. Then Section 12.2.1 presents a simple mathe-

matical description of a stochastic gene regulatory system with transcription and

translation. Then Sections 12.2.2 through 12.2.4 show how the parameters of this

model can be identified from various pieces of limited information.

12.1 Sensitivity Analyses of Stochastic Proces-

ses

The object of a mathematical model is not just to match observed behavior,

but to determine how a system will change when modified. As an analytical tool,

this ability would allow researchers to predict how a system will react in a wide

array of environments. As a design tool, such knowledge is even more useful as

it allows researchers to determine how best to alter a system to achieve a desired

result. Owing to their immense computational burden, such understanding is as
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yet out of reach for most discrete stochastic systems. While Monte Carlo type

approaches such as those reviewed in Chapter 3 provide great tools with which

to visualize a system’s dynamics, they require a huge collection of simulations

to obtain an accurate statistical solution. This becomes particularly troublesome,

when one wishes to compare distributions arising from slightly different parameter

sets. Unless sensitivities are very large or the distribution is very precise, changes

in the distribution may be hidden by the simulation errors [40]. The advantages

of a direct deterministic analysis such as Moment analysis approaches or the FSP

is that they are readily repeatable and easily compared.

The sensitivity analysis approach taken in this report is a very simple finite

perturbation analysis. First, the master equation is solved with a nominal set

of parameters. This results in a full probability distribution at specific points in

time. Then one or more of the parameters are changed by a slight amount, and

the master equation is solved again for the new parameter set. The sensitivity of

the probability distribution is then simply the difference in the solutions of the

two master equations divided by the value of the perturbation. As an example,

Chapter 15.2 applies such a sensitivity analysis on a stochastic model of a genetic

toggle switch. In many cases the sensitivity of the full distribution is more infor-

mation than is necessary, and instead one may only wish to analyze how certain

functions of that distribution change with the parameters. For example, in the

identification schemes below, one may define a metric ρ(Pmod,Pexp) ∈ R≥0 which

compares model distribution Pmod and a experimental distribution Pexp. Then

by computing the sensitivity of ρ to the parameters one can determine the best

direction to search for for better parameter sets to match the experimental data.
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12.2 Identification of Stochastic Processes

In addition to sensitivity analyses, precise computations of system statistics al-

low can allow one to distinguish between systems with slightly different parameter

sets. This enables one to determine which set of parameters is better in the sense

that it matches some known information or experimental data. This converging

process of proposing and rejecting models is at the heart of scientific inquiry [58].

This section illustrates how such a process can be used in the identification of the

parameters of a simple stochastic network of gene transcription and translation.

Below, Chapter 15.3 illustrates the identification procedure on a stochastic model

of the gene toggle switch.

12.2.1 Moment analysis of a simple gene regulatory net-

work

Consider a simple description of gene transcription and translation. Let x

denote the population of mRNA molecules, and let y denote the population of

proteins in the system. The system population is assumed to change only through

four reactions:

∅ → mRNA; mRNA → ∅; mRNA → mRNA + protein; protein → ∅,

for which the propensity functions (or stochastic reaction rates) are

w1(x, y) = k1+k21y; w2(x, y) = γ1x; w3(x, y) = k2x; w2(x, y) = γ2y.
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Here the term k21 corresponds to a feedback effect that the protein is assumed

to have on the transcription process. In positive feedback, k21 > 0, the pro-

tein increases transcription; in negative feedback, k21 < 0, the protein inhibits

transcription.

For this system, one can write the master equation [105]:

Ṗi,j(t) = −(k1+k21j + γ1i + k2i + γ2j)Pi,j(t)

+ (k+k21j)Pi−1,j(t) + γ(i + 1)Pi+1,j(t)

+ k2iPi,j−1(t) + γ2(j + 1)Pi,j+1(t), (12.2.1)

where Pi,j(t) is the probability that (x, y) = (i, j) at the time t, conditioned on

some initial probability distribution P(t0). In this expression, the first negative

term corresponds to the probability of transitions that begin at the state (x, y) =

(i, j) and leave to another state, and the remaining positive terms correspond to

the reactions that begin at some other state (x, y) -= (i, j) and transition into the

state (i, j).

The mean values of x and y can be written as:

v1(t) = E{x} =
∞∑

i=0

∞∑

j=0

iPi,j(t)

v3(t) = E{y} =
∞∑

i=0

∞∑

j=0

jPi,j(t). (12.2.2)

The derivatives of these mean values are found simply by substituting (12.2.1)

into (12.2.2):

v̇1(t) =
∞∑

i=0

∞∑

j=0

iṖi,j(t) = k1+k21v3 − γ1v1,
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and

v̇3 =
∞∑

i=0

∞∑

j=0

jṖi,j(t) = k2v1 − γ2v3.

Similarly, expressions for the second uncentered moments can be written:

v2 = E{xx} =
∞∑

i=0

∞∑

j=0

iiPi,j,

v4 = E{yy} =
∞∑

i=0

∞∑

j=0

jjPi,j,

v5 = E{xy} =
∞∑

i=0

∞∑

j=0

ijPi,j, (12.2.3)

and evolve according to the set of ordinary differential equations:

v̇2 =
∞∑

i=0

∞∑

j=0

i2Ṗi,j(t) = k1 + (2k1 + γ1)v1 − 2γ1v2+k21v3 + 2k21v5,

v̇4 =
∞∑

i=0

∞∑

j=0

j2Ṗi,j = k2v1 + γ2v3 − 2γ2v4, +2k2v5,

v̇5 =
∞∑

i=0

∞∑

j=0

ijṖi,j = k2v2 + k1v3+k21Ev4 − (γ1 + γ2)v5.

Altogether the various components of the first two moments,

v(t) :=

[
E{x} E{x2} E{y} E{y2} E{xy}

]T

,
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evolve according to the linear time invariant ODE:

v̇ =





−γ1 0 k21 0 0

γ1 + 2k1 −2γ1 k21 0 2k21

k2 0 −γ2 0 0

k2 0 γ2 −2γ2 2k2

0 k2 k1 k21 −γ1 − γ2





v +





k1

k1

0

0

0





= Av + b. (12.2.4)

With these expressions for the dynamics of the first two moments, the following

subsections will show how these expressions can be used to help identify the various

parameters: [k1, γ1, k2, γ2, k21] from properly chosen data sets.

12.2.2 Identifying transcription parameters

Begin by considering a simpler birth-death process of mRNA transcripts,

whose populations are denoted by x. The moment equation for this system is:

d

dt




v1

v2



 =




−γ 0

γ + 2k −2γ








v1

v2



 +




k

k



 .

By applying the nonlinear transformation:




µ

σ2 − µ



 =




v1

v2 − v2
1 − v1



 ,
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where µ and σ2 refer to the mean and variance of x, respectively, one arrives at

the transformed set of equations:

d

dt




µ

σ2 − µ



 =




v̇1

v̇2 − 2x̄ ˙̄x− v̇1





=




−γ1v1 + k

(γ1 + 2k)v1 − 2γv2 + k − (2v1 + 1)(−γv1 + k)





=




−γ 0

0 −2γ








µ

σ2 − µ



 +




k

0



 . (12.2.5)

Suppose that µ and σ2 are known at two instances in time, t0 and t1 = t0 + τ ,

and denote their values at time ti as µi and σ2
i , respectively. The relationship

between (µ0, σ2
0) and (µ1, σ2

1) is governed by the solution of (12.2.5), which can be

written:




µ1

σ2
1 − µ1



 =




exp(−γτ)µ0

exp(−2γτ)(σ2
0 − µ0)



 +




k
γ (1− exp(−γτ))

0



 . (12.2.6)

In this expression there are two unknown parameters, γ and k, to be identified

from the data {µ0, σ2
0, µ1, σ2

1}. If µ0 = σ2
0, the second equation is trivial, and the

solution could be any pair:

(
γ, k = γ

µ1 − exp(−γτ)µ0

1− exp(−γτ)

)
.

If for the first measurement µ0 -= σ2
0 and for the second measurement µ1 -= σ2

1,
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then the solution is unique:

γ = − 1

2t
log

(
σ2

1 − µ1

σ2
0 − µ0

)

k = γ
µ1 − exp(−γt)µ0

1− exp(−γτ)
.

Note that if µ1 and σ2
1 are very close, the sensitivity of γ to small errors in this

difference becomes very large. From (12.2.6), one can see that as τ becomes very

large (σ2
1 − µ1) approaches zero, and steady state measurements do not suffice to

uniquely identify both parameters.

12.2.3 Identifying transcription and translation parame-

ters

The full system in (12.2.4) has the solution:

v1 = eAτv0 +

∫ τ

0

eA(τ−s)bds, (12.2.7)

with the notation vi = v(ti) and ti+1 = ti + τ . Drawing upon the fact that

the parameters {k1, γ1, k2, γ2} are all positive, one can show that the matrix A

is stable and invertible so long as the following condition holds on the feedback

term:

k21 ≤
γ1γ2

k2
.

Under this condition, (12.2.7) can be written as:

v1 = eAτv0 −A−1
(
I− eAτ

)
b. (12.2.8)
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Suppose that vj has been measured at some equally distributed points in time

{t0, t1, . . . , tm}, and one wishes to identify the parameters λ = {k1, γ1, k2, γ2, k21}

that satisfy:

J(λ) :=
m∑

j=1

∣∣vj − eAτvj−1 + A−1
(
I− eAτ

)
b
∣∣ = 0.

The following subsections provide a few possible approaches to identify these

parameters.

Looking at the invariant distribution

If the probability distribution dynamics described in (12.2.4) has an invariant

distribution, then the steady state moments,

v∞ = lim
t→∞

[v1, v2, v3, v4, v5]
T ,

must satisfy:

Av∞ − b = 0.

This equation can be rewritten in terms of the unknown parameters as:

Ψ∞λ = lim
t→∞

Ψ(t)λ = 0,
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where

Ψ(t) =





1 −v1 0 0 v3

1+2v1 v1 − 2v2 0 0 v3+2v5

0 0 v1 −v3 0

0 0 v1+2v5 v3−2v4 0

v3 −v5 v2 −v5 v4





.

From this expression, it is obvious that there are two possible cases: (1) the rank

of the matrix is full and only the trivial solution is possible: λ = 0, or (2) the

matrix has a null-space spanned by {φ1, . . . , φp} and there are an infinite number

of parameter sets that will result in the same invariant distribution:

λ =
p∑

i=1

αiφi, for any [α1, . . . , αp] ∈ Rp.

So long as the parameters enter linearly into the propensity functions w(x) =
∑M

µ=1 cµf(x), then one can extend this argument for any finite number of n mo-

ments of the stationary distribution. This tells us that the steady state distribution

cannot provide enough information to uniquely identify the set of system parame-

ters. Additional information is needed. For example, if the rank of the null space

is one, then the knowledge of any one parameter from the set λ can provide an ad-

ditional linearly independent equation, and can enable the unique determination

of the parameters. If the rank of the null space is p, then at least p additional,

linearly independent, pieces of information will be required.

Identifying parameters with full state and derivative information

Suppose that it is possible to measure both the moments and their time deriva-

tives at specific instances in time. In this case, one obtains the same expressions
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as above but at a finite time where the time derivatives are non-zero:

Ψ(t)λ = v̇(t).

Depending on the values of v(t), the matrix Ψ(t) may or may not have full rank.

In particular, if the system is at an invariant distribution as above, then Ψ(t)

will not be invertible. As another example, if the measurements are taken when

y = 0 then E{y} = E{y2} = E{xy} = 0 and the 4th and 5th columns of Ψ(t)

will be zero, and the rank will be at most 3. In this case, the parameters γ2 and

k12 will not be identifiable. If v(t) can be specified such that Ψ(t) is invertible,

then the parameters can be identified directly from the measurement of v(t) and

its derivative, v̇(t).

Identification without derivative knowledge

In most cases it is not feasible to measure the time derivative of the moments.

More likely, one will only be able to measure the moments at discrete instances

in time. In this case one must perform the identification analysis in discrete time

according to (12.2.8), which can be rewritten as:

vj = Gvj−1 + ψ.

Here, the matrix G and the vector ψ are the unknown quantities that we wish to

identify. These matrices will be subject to some nonlinear constraints of the form

G = exp (Aτ) , and

ψ = −A−1
(
I− eA(t1−t0)

)
b, (12.2.9)
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where A = A(λ) and b = b(λ) are given as above in (12.2.4).

The relation between vi and vi−1 in (12.2.8) can be rearranged as:

vi = [G, ψ]




vi−1

1



 .

For now, one may ignore the constraints in (12.2.9) and attempt to solve for the

5 × 6 matrix [G, ψ]. With measurements of v0 and v1, one would have only five

equations but thirty unknown values (twenty-five in G and five in ψ). This is

not yet enough. However, if one takes measurements at seven equally distributed

points in time {v(ti)}, one can write:

[
v1 . . . v6

]
= [G, ψ]




v0 . . . v5

1 . . . 1





Vf = ĜVi, (12.2.10)

where Ĝ = [G, ψ] is the matrix of unknown values. Now there are thirty equations

with which one can find the thirty unknown values provided that the equations

are linearly independent–a fact that can be checked by examining the rank and

condition of the matrix Vi. As long as Vi has full rank, then the solution for Ĝ

is given by:

Ĝ = VfV
−1
i .

In the case of measurement noise it is often advantageous to have more than the

minimum number of measurements in (12.2.10). In this case Ĝ should be chosen

117



as the argument that minimizes Vf − ĜVi in the least squares sense:

Ĝ = VfV
−R
i .

Once one has extracted G from Ĝ, one can diagonalize it:

G = eAτ = S−1eΛτS,

and solve for the matrix A:

A = S−1ΛS =
1

τ
S−1 log(SGS−1)S,

where log(SGS−1) corresponds to the natural logarithm of the elements of diag-

onal matrix SGS−1. Finally,

ψ = −A−1 (I−G)b,

gives:

b = − (I−G)−1 Av,

and it is relatively easy to solve for the parameters: {k1, γ1, k2, γ2, k21} from the

definition of A in (12.2.4).

12.2.4 Non-linear optimization based identification

The previous section did not utilize the nonlinear constraints (12.2.9) on the

unknown values of G and ψ. As a result, we were left with thirty unknowns

for which we required thirty linearly independent equations. The advantage of
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such an approach is that the parameters are easily identified from the data by

performing a few simple matrix operations. However, to get these equations, one

is forced to measure vi at seven different points in time. Since G and ψ are defined

by non-linear equations of only five variables, it is reasonable to expect that these

parameters should be recoverable with far fewer measurements. However, in this

case it is no longer easy to find closed analytical expressions to determine the

parameters from the measurements. Instead one must seek to find the argument

that minimizes

J(λ) =
∣∣∣
∣∣∣Vf − ĜVi

∣∣∣
∣∣∣
F

,

where the ||.||F refers to the Frobenious norm (sum of squares of all elements). In

the examples below, this minimization is done numerically under the constraints

in (12.2.9), and the definitions of A and b in (12.2.4).

Identifying parameters with protein distributions only

While it is not currently possible to measure the cell by cell distribution of

mRNAs, it is possible to get this information for protein distributions. To do

this, one can attach florescent tags, such as green florescent protein (GFP), to the

protein of interest and then measure the expression of that protein using flow cy-

tometry or fluorescence activated cell sorting (FACS). Such an approach will yield

a histogram of the number of cells containing different levels of the protein. This

section presents an identification approach with which this protein distribution

information is sufficient to identify rates for transcription and translation.

Supposing that it is only possible to measure the first and second moment

of the protein distribution, then these measurements are of the form: qi = Cvi,
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where

C =




0 0 1 0 0

0 0 0 1 0



 .

In the previous cases, it has been assumed that the initial distribution is known

or measurable, but in this case the five initial values of v0 must now also be

estimated in the identification procedure. The identification problem is now to

find the set of parameters λ = [k1, γ1, k2, γ2, k21]
⋃

v̂0 ∈ R10, all positive except

k21 that minimizes

J(λ) =
m∑

i=0

|qi −Cv̂i|2 ,

where qi is the measurement at the ith time point, and v̂i is the corresponding

estimate of vi. Substituting the expression (12.2.8) for v̂ yields

J(λ) = |q0 −Cv̂0|2 +
m∑

i=1

∣∣∣∣∣qi −C

(
Giv̂0 +

i−1∑

j=0

Gjψ

)∣∣∣∣∣
2

,

where G and ψ are functions of (k1, γ1, k2, γ2, k21) subject to the constraints in

(12.2.9), and the definitions of A and b in (12.2.4).

In order to fit the ten unknown quantities in λ, one requires at least ten

independent equations and ten data points. In the case where the protein first

and second moments are measured, this requires measurements at five different

time points. With full state measurement, C = I, as few as two time points will

be sufficient, provided that those measurements are rich in all transient dynamics.
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12.2.5 Transcription and translation identification exam-

ples

In order to examine the utility of the above identification techniques, a set

of over 2200 gene regulatory networks have been numerically generated. In each

case, the parameters are randomly chosen:

k1 = U(0, 0.2), γ1 = U(0, 0.002),

k2 = U(0, 0.2), γ2 = U(0, 0.002), and

k21 = U(−0.0002, 0),

where the notation U(a, b) denotes a uniform random number between a and b.

The initial distributions are also chosen randomly according to:1

v0
1 = E{x(0)} = U(0, 10),

v0
2 = E{x2(0)} = (v0

1)
2U(1, 2),

v0
3 = E{y(0)} = U(0, 100),

v0
4 = E{y2(0)} = (v0

3)
2U(1, 2), and

v0
5 = E{x(0)y(0)} = v0

3v
0
1.

The goal is to identify these parameters and initial conditions through three ap-

proaches.

1. Full state knowledge without non-linear constraints (FL, Section 12.2.3).

2. Full state knowledge with non-linear constraints (FNL, Section 12.2.4).

1The initial distributions are chosen in this manner to guarantee that the variance is non-
negative, and the covariance of x and y is zero.
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3. Partial state knowledge with non-linear constraints (PNL, Section 12.2.4).

Each identification is conducted under the assumption that there is no mea-

surement noise contained in the identification data. For the non-linear optimiza-

tion approaches (FNL and PNL), the initial guess for each parameter is randomly

chosen to be within one degree of magnitude above or below its true value. All

non-linear optimizations use Matlab’s standard optimization routine fminsearch.

In cases when the optimization terminates with a loss function that is greater than

ε, the optimization routine makes a new random initial guess and reattempts the

optimization. Three cases are possible: (i) If the optimization does not converge

within twenty attempts, then identification is deemed inconclusive. (ii) When

the loss function converges to less than ε, and the corresponding parameters, λ̂i,

satisfy
∑

i

(
λ̂i − λi

λi

)2

≤ δ2,

then that identification is considered to have been successful. (iii) Finally, if the

optimization routine converges within ε, but the parameters are not satisfactorily

close to the true values, the optimization is considered to have yielded a false

positive. For this analyses, ε = 10−7 and δ = 0.01.

In every case the FL optimization procedure successfully identified all of the

unknown parameters. Also, because this procedure relies only upon a few rela-

tively simple matrix operations and not a numerical optimization, this approach is

by far the fastest. However, this identification approach requires a total of thirty-

five measurement quantities for each system (five states at seven time points). In

practice such experimental results may be prohibitively expensive or otherwise

impossible to obtain.

The FNL routine has been applied for measurements of all five states in v(t),
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Figure 12.1: Comparison of the dynamics of the true (solid lines) and estimated
(dashed lines) system moments for a random set of parameters and initial distribu-
tion. Here the FNL estimation uses all five elements of the first two moments (v1

through v5). (left) Estimation based upon the measurements at two time points
shown in squares. (right) Estimation based upon the measurements at three time
points.

but at only two points in time. The numerical optimization converged in every

case but two, but falsely identified the system parameters for about 8.5% of the

systems. By increasing the number of measurements to three time points (less

than half the number of measurements required for the FL method), the success

rate of the FNL on the same systems and same initial conditions rose to 100%.

Fig. 12.1 illustrates one case in which the FNL identification failed dramatically

for a data set of two time points, but succeeded with one additional time point.

For the PNL identification, the parameters are identified using only the pro-

tein information at five separate equally distributed points in time. This more

computationally intensive approach correctly identified the parameters for about

66.5% of the systems. However this approach failed to converge for 16.1% of the

systems and provided false identifications for 17.4% of the systems. Once again,

the addition of more time points confers a large advantage (See for example Fig.

12.1). With protein measurements at 6 time points, the false identification rate

dropped to less than 0.2%.
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Figure 12.2: Comparison of the dynamics of the true (solid lines) and estimated
(dashed lines) system moments for a random set of parameters and initial distribu-
tion. Here the PNL estimation uses only data about the protein mean and second
moments only (v3 and v4). (left) Estimation based upon the measurements at five
time points shown in squares. (right) Estimation based upon the measurements
at six time points.

12.2.6 Effect of measurement errors on identification

In the real world, it is impossible to obtain perfect measurements, and col-

lected data will always contain some unknown amounts of measurement errors.

It is therefore important to characterize how sensitive parameter estimation is

to measurement error. This sensitivity depends upon many factors including the

identification strategy, the number of measurements, and the periods at which the

measurements are taken (See Fig. 12.3).

We have explored the effects of measurement noise on two identification strate-

gies: First, if one can simultaneously measure mRNA and protein levels in indi-

vidual cells, then one can get all five joint moments v(ti) at multiple time points.

Second, if one can only measure the cellular populations of proteins, then one can

only obtain the marginal moments v3(ti) = E{y} and v4(ti) = E{y2}. Because

the latter strategy then requires the indirect identification of v1, v2 and v5, it is

typically less effective than the former strategy (compare dashed and solid lines

in Fig. 12.3). For either strategy, more measurements are better as shown in Fig.
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12.3a. However, the time of the measurements is also important–periods between

measurements must be long enough for transient dynamics to evolve perceptibly,

but short enough that the dynamics do not die out altogether (See Fig. 12.3b).

Identification of system parameters also depends upon the robustness of the

system response to parametric variations. To see this connection, consider the

first order effects that a parameter change2 of ∆Λ = [∆λ1, . . . , ∆λn]T may have

on the a set of measurements Y = [Y1, . . . ,Ymp]T :

∆Ỹ ≈ S ·∆Λ̃,

where ∆Ỹ = [∆Y1/Y1, . . . , ∆Ymp/Ymp]T denotes relative change in each of the p

outputs at m time points, and ∆Λ̃ = [∆λ1/λ1, . . . , ∆λn/λn]T denotes the relative

change in the n different parameters. The sensitivity matrix,

S =





∂Y1/Y1

∂λ1/λ1
. . . ∂Y1/Y1

∂λn/λn

...
. . .

...

∂Ymp/Ymp

∂λ1/λ1
. . . ∂Ymp/Ymp

∂λn/λn




,

is relatively easy to compute using small perturbations about the nominal values

of Λ or with a sensitivity function as in [52]. The inverse of this relationship

approximates how the parameter estimation would change if one were to have

inaccuracies in the measurements:

∆Λ̃ ≈ S−L ·∆η̃,

where ∆η̃ = [ηi/Yi] is the relative amount of noise in each of the measurements

2For ease of notation, the unknown initial conditions v(0) are treated here as elements of the
parameter vector Λ.
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used for the identification. For each parameter, two situations are possible. If

the system is sensitive to a parameter, then small variations in that parameter

will lead to large variations in system response. In this case, small measurement

errors will have little effect on the estimation. Alternatively, if a system is ro-

bust to a certain parameter, small measurement errors will lead to much larger

discrepancies in the estimation. However, the model will not require as much pre-

cision in the estimation of the more robust parameters. In the modeling endeavor,

those parameters which are most sensitive and important are the same that are

most easily identified. For the examination of this tradeoff, consider the average

absolute sum of the column of S corresponding to the parameter λj:

rj ≈
1

mp
|Sj|1 .

This quantity can be seen as a metric of the average absolute change in the

measurements dues to a relative change in the parameter λj. Small values of rj

denote that the system is relatively insensitive to changes in the parameter λi.

Similarly, define the quantity:

si ≈
1

mp

∣∣R−L
ij ∆η̃

∣∣
1
,

to approximate the average relative estimation error in λi due to a random rel-

ative noise vector ∆η̃ in the measurement data. Small values of si show that

the estimation of the parameter λi is insensitive to measurement errors. A set

of 50,000 systems have been randomly generated according to the rules in the

previous subsection. The measurements of these systems are subject to random

amounts of Gaussian distributed measurement noise with 1% variance. For each

126



system and set of noisy measurements, {si} and {ri} have been computed, and

their median values are listed in Table 12.1. From the table, we see that the

transcription/translation process is more robust to changes in γ1 and γ2 (r2 and

r4 are small), but these same parameters are the most sensitive to measurement

errors (s2 and s4 are relatively large).
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Figure 12.3: Median relative error gain per measurement, (1/η)|λ̂i − λi|/|λi| in
each of the parameters {k1, γ1, k2, γ2, k21} versus (a) the number of measurements
for a time step of 300s and (b) the time step for 40 total measurements. Solid
lines correspond to the identification with full state measurements, and the dashed
lines correspond to the identification with protein mean and second moment only.
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Chapter 13

Applying the FSP to a Toy
Model of the Pap Switch

The first example to illustrate the various Finite State Projection approaches

is a toy model of the Pap-Pili epigenetic switch. Pili are small hair-like structures

that enable bacteria to bind to epithelial cells and thereby significantly increase

the bacteria’s ability to infect host organisms. However, pili expression comes at

cost to the bacteria, as the production of pili requires a large portion of the cel-

lular energy. Whether or not E. coli are piliated depends upon the regulation of

genes such as the pyelonephritis-associated pili (pap) genes. The model presented

in this chapter is a very simplified version of the full pap model, which will be

considered in great detail in Chapter 16. The majority of this and the extended

model is based upon experimental observations made by David Low’s group at

UCSB [9, 45, 46], and specific results of the more detailed model are presented

in [66] and in Chapter 16 below. Figure 13.1 shows a simple illustration of the

system consisting of a single operon with two binding sites and a regulatory pro-

tein, Leucine-Responsive regulatory Protein (Lrp). Lrp binds reversibly at either

or both of the pap binding sites such that the operon can exhibit four different

configurations (in this simplified model). Each of these configurations is consid-
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ered as a separate chemical species: g1 to g4 as defined in Figure 13.1. When Lrp

binds to the upstream site (left) and not to the downstream (right) site, the cell

is considered to be in a production state - when in this state (circled in Figure

13.1), the cell can produce the proteins necessary to begin production of the pap

pili. All other configurations do not produce the necessary proteins.

In addition to the operon and Lrp, this model also considers the local regula-

tory protein, PapI, which acts to decrease the rate at which Lrp unbinds from the

operon. In the real system the change in the population of PapI serves as a posi-

tive feedback loop in that larger concentrations of PapI make it more likely for the

gene to express the g2 configuration and continue to produce Pili [45, 46]. In the

first example, the population of PapI is assumed to be constant, and the system

has exactly four reachable states from the initial condition. In this case the chem-

ical master equation can be solved exactly to find the probability density vector

at any future time. In the second example the population of PapI is allowed to

change according to translation and degradation events, and the resulting Markov

process describing the chemical system has an infinite number of possible states.

In each example, the solution scheme is first presented, followed by documenta-

tion of the specific parameters and a presentation of computed results. The FSP

analyses are then compared to those obtained through use of the SSA and a few

of its approximants, and comments are made regarding the comparative efficiency

and accuracy of the methods.

13.1 Exact Solution for Finite State Problem

The first example considers the Pap-Pili system shown in Figure 13.1, in which

it is assumed that the total concentrations of Lrp and PapI are finite integer
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R1 R2 R3

R4

R5

R6
R7

R8

g1

g2 g3

g4

LRP

Figure 13.1: Schematic of the four possible DNA-Lrp binding configurations of
the Pap Pili operon and the eight possible Lrp binding and unbinding reactions.
The circled state corresponds to the production state in which transcription of the
messenger rna’s for pili production and PapI translation is possible.

quantities fixed at u0 and r0, respectively. With these assumptions, one can

uniquely write out all four possible state descriptions in terms of the populations

of each of the important species.

X =










g1

g2

g3

g4

Lrp

PapI





i






=










1

0

0

0

u0

r0





,





0

1

0

0

u0 − 1

r0





,





0

0

1

0

u0 − 1

r0





,





0

0

0

1

u0 − 2

r0










.

(13.1.1)

The propensity function for each of the eight possible chemical reactions, aµ(X) for

µ = {1, 2, . . . , 8}, is given by a PapI-dependent reaction rate constant, cµ([PapI]),

multiplied by the product of the concentrations of the reactants. For example,

reaction number 1 of the form R1 : g1 + Lrp → g2 has a propensity function:

a1 = c1([PapI])[g1][Lrp], where brackets, [.], around a chemical species denote the
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population of that chemical species. Since in this case, the populations of PapI

and Lrp are assumed to be constant, and gi is either zero or one, the complete

reaction matrix A can be written as:

A =





−c1u0 − c3u0 c2 c4 0

c1u0 −c2 − c5(u0 − 1) 0 c6

c3u0 0 −c4 − c7(u0 − 1) c8

0 c5(u0 − 1) c7(u0 − 1) −c6 − c8





.

(13.1.2)

Suppose that that at time, t = 0, the system is in the x1 state–it has the initial

probability density vector,

P(X; 0) =

[
P (x1; 0) P (x2; 0) P (x3; 0) P (x4; 0)

]T

=

[
1 0 0 0

]T

.

Then one can exactly calculate the solution of the probability density vector at

time, tf , as: P(X; tf ) = exp(Atf )P(X; 0).

Table 13.1 provides the system parameters and reaction constants for this

example. For the state reaction matrix, A given in Eqn 13.1.2, the state transition

matrix, exp(Atf ), has been calculated in Matlab using the command expm(.).

Figure 13.2, black bars, shows the probability density vector of the system at the

final time, tf = 10s, as calculated using the FSP. Figure 13.2, also shows the same

probability density vectors as averaged using 104 simulations of the SSA (dark gray

bars) included in the software package StochKit [80]. In terms of accuracy, Figure

13.2 shows that the SSA and the FSP produce very similar results. However, even

after 104 simulations, the pdv acquired with the SSA differs noticeably from the

more accurate FSP solution. Suppose one is only interested in the probability that
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the gene will be in the g1 configuration. From the FSP computation this state

has a probability of 2.433 × 10−3. Five independent sets of 104 SSA simulations

predicted this probability to be {2.2, 2.9, 2.6, 1.6 and 3.7} × 10−3, respectively.

Thus the SSA results have relative errors that range from -34 to +52 percent.

Depending upon the needs of the researcher, such errors may be unacceptable,

and more simulations will be required. As the number of simulations increases,

the SSA approaches the accuracy of the FSP; however, even at one million runs

the relative errors in the prediction of the g1 state often exceeds 0.6 percent. On

average, each SSA run required the simulation of about 24 events. However, if

one were to increase all of the rate constants by a large constant (or equivalently

increase the time of simulation), then the number of reactions would increase

proportionately. As more reactions occur, the computational effort of the SSA

also increases, while the effort required for the FSP method remains unchanged.

For a comparison of the time required, the FSP solution took less than 0.3 seconds

while the SSA took slightly more time (0.4 seconds) to simulate the system 104

times or about 40 seconds to simulate the system one million times.

As stated above, the use of time leaping methods has dramatically improved

the computational efficiency of the SSA in many circumstances. However, for this

particular example, these methods offer no advantage. At any instant in time,

each of the four molecular species, g1 to g4, has a population of either zero or one.

It is not possible for any reaction to occur twice consecutively without resulting in

negative populations. Furthermore, every propensity function switches between

zero and some positive value within the space of a single reaction. In order to

avoid impossible populations, therefore, no τ leap may include more than a single

reaction, which is no better than an SSA step. The reader should note that
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Figure 13.2: Probability density vector for the simple 4-state model at time,
tf = 10s, as calculated directly using the exact FSP method (black bars) and
as averaged using 10,000 runs of the Stochastic Simulation Algorithm (dark gray
bars) and an adaptive τ leaping algorithm (light gray bars). Initial conditions were
pap operon configuration, g1, at to = 0s (See parameters and initial conditions in
Table 13.1).

statement applies to Binomial τ leaping as well as Poisson τ leaping. For example,

StochKit’s adaptive step size τ leaping code [80] automatically reverts to the

SSA and takes about 0.4 seconds for 104 realizations. Figure 13.2, light gray bars,

illustrates the results using 104 τ leaping simulations.

13.2 Approximate Solution Infinite State Prob-

lem

In most realistic biological systems, the chemical concentrations of regulatory

proteins are constantly changing by discrete values through transcription, trans-

lation, degradation, and similar events. This example adds additional reactions to
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Reactions
Number Stoichiometry Rate Constant(cµ) Units
R1 X1 + Lrp → X2 100 s−1

R2 X2 → X1 + Lrp 250− 225
(
1− r

1+r

)
s−1

R3 X1 + Lrp → X3 100 s−1

R4 X3 → X1 + Lrp 120− 20
(
1− r

1+r

)
s−1

R5 X2 + Lrp → X4 1 s−1

R6 X4 → X2 + Lrp 120− 20
(
1− r

1+r

)
s−1

R7 X3 + Lrp → X4 1 s−1

R8 X4 → X3 + Lrp 250− 225
(
1− r

1+r

)
s−1

Parameters and Initial Conditions
Parameter Notation Value
Lrp Population uo 200
PapI Population ro 5
Initial Time to 0s
Final Time tf 10s
Initial pdv P(X; 0) [1, 0, 0, 0]T

Table 13.1: Reactions and parameters used in the SSA and exact FSP solutions
for the four-state, eight-reaction system describing the Pap-Pili Epigenetic Switch.

the above system and allows the population of PapI to change over time. For later

convenience, let the variable, r, to denote the concentration of PapI: r ≡ [PapI].

Suppose r increases by a stochastic reaction that can occur when the gene is in the

g2 configuration. Also, let r decrease through a stochastic degradation event that

is independent of the gene state. The propensity functions for these events can

then be given, respectively, as: aT = cT [g2] and aD = cDr. Because r is allowed
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to change, the set of all possible states becomes:

X =










g1

g2

g3

g4

Lrp

PapI





i






=










1

0

0

0

u0

r





,





0

1

0

0

u0 − 1

r





,





0

0

1

0

u0 − 1

r





,





0

0

0

1

u0 − 2

r










,

(13.2.1)

for r = {0, 1, 2, . . .}. At this point is is useful to establish a unique ordering system

for the elements in the configuration space, X. For this particular problem, it is

convenient to arrange the states according to the population of PapI:

j =






(4r + 1) if [g1] = 1

(4r + 2) if [g2] = 1

(4r + 3) if [g3] = 1

(4r + 4) if [g4] = 1






=
4∑

i=1

(r + i[gi]), (13.2.2)

where j is the index of the state xj ∈ X. The system changes from one state

to another through three types of reactions: first, the operon configuration can

change according to the reactions described above in the first example. The rates

for these reactions are now dependent upon the variable concentration of PapI:

Ar = A(r), where the form of A is given in Eqn 13.1.2. The second reaction

type allows for the translation of PapI only when the pap operon is in the g2

configuration. The third type allows for PapI to degrade. Using the ordering

defined in Eqn 13.2.2, all reactions can be combined to form the global infinitesimal
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generator:

A =





A0 −T0 −D0 D1 0 0 . . .

T0 A1 −T1 −D1 D2 0 . . .

0 T1 A2 −T2 −D2 D3
. . .

... 0 T2 A3 −T3 −D3
. . .

...
. . . 0 T3

. . .

...
. . . . . . 0

. . .

...
. . . . . . . . . . . .





,

(13.2.3)

where the transcription and the degradation matrices, T and D, respectively, are

given by:

T =





0 0 0 0

0 cT 0 0

0 0 0 0

0 0 0 0





and D =





cD[r] 0 0 0

0 cD[r] 0 0

0 0 cD[r] 0

0 0 0 cD[r]





. (13.2.4)

The production and degradation of PapI are modeled as stochastic events, such

that it is possible (although with zero probability if cT is finite and cD is non-

zero) that infinitely more PapI-production events will occur than PapI-degradation

events in finite time. This suggests that the value of r must be allowed to grow un-

bounded, and one cannot compute an exact analytical solution as in the previous

example. In this case it will be necessary to truncate A using the FSP algorithm.

Suppose that at time, t = 0, it is known that the gene is in the g1 configuration,
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and there are exactly ro molecules of PapI present in the system:

PJo(0) =





1

0

0

0





, where Jo =





4ro + 1

4ro + 2

4ro + 3

4ro + 4





.

Then, using the FSP algorithm, if one can find a principle sub-matrix, AJk
, such

that:

|exp(AJk
tf )PJk

(0)|1 ≥ 1− ε, (13.2.5)

then it is guaranteed that the probability density for every state at time, t = tf ,

satisfies: ∣∣∣∣∣∣∣




PJk

(tf )

PJk
′(tf )



−




PFSP

Jk
(tf )

0





∣∣∣∣∣∣∣
1

= ε. (13.2.6)

For this problem, it is easy to choose a searching algorithm to dictate the expansion

of the set Jk until the condition specified by Eqn 5.3.1 is met. The most reasonable

search algorithm is to simply continue adding adjacent block structures of the

form given in Eqn 13.2.3 - this corresponds to increasing the space of sets that are

sequentially reachable from Jo through PapI translation and degradation events.

Tables 13.1 and 13.2 provide the reaction parameters that have have been used

for this example. In this example, the total error tolerance is ε = 10−6 for the

probability density vector at time tf . Figure 13.3 shows the lower bound on the

probability density vector at the final time as computed with the FSP algorithm.

In this figure, the states have been arranged according to their index as specified in

Eqn 13.2.2. Recall that although inclusion of states is based upon reachability, the

choice of enumeration is arbitrary, such that it is often necessary to reorder and
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combine states to illustrate more meaningful results. For instance, in this example

one may be most interested in the distribution of the different operon states: g1

through g4 or the distribution of the population of PapI. Figure 13.4 shows the

partial probability density vectors for the population of PapI as separated for

each possible operon configuration. From the figure, one can observe that the

production operon configuration, g2 (top right), has a different distribution shape

than do the the other states. In particular, the median population of PapI is

much larger when the operon is in the g2 configuration. In this pap system,

the population of PapI can be related to amount of pili expression found on the

bacteria, and it might not actually be interesting to know the gene configuration

of the system. In this case, it is helpful to consider the distribution in the format

of Figure 13.5, which shows the probability density of the total amount of PapI.

For these results, the FSP required the inclusion of all values of r from zero to

30 (corresponding to a total of 124 states), and the total sum of the probability

density was found to be greater than 0.999999. The results provide us a guarantee

that the probability of every state (including those with more than 30 copies of

r) are known within a positive error of 10−6. We also have a guarantee that the

error in the full probability density vector is non-negative and sums to less than

10−6.

The most biologically interesting results correspond to cells in which there is a

large amount of PapI; these are the cells that will actually succeed in turning ON

and express Pili. For this model, define an ON cell as a cell that contains at least 20

molecules of PapI. In Figure 13.5, ON cells are all those to the right of the dashed

line. From the figure one can immediately see that the probability turning ON is

very low; using the FSP, this probability is guaranteed to be within the interval
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Figure 13.3: Probability density vector solution for the pap-pili model in which
PapI is allowed to change through stochastic translation and degradation events.
The states are ordered according to Eqn 13.2.2, and the density vector is shown
as time tf = 10s for the initial condition of state j = 21 ([PapI]=5 molecules and
pap operon in state g1) at time to = 0s (See also parameters and initial conditions
in Tables 13.1 and 13.2).
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Figure 13.4: Solution for the pap-pili model in which PapI is allowed to change
through stochastic translation and degradation events. The probability density
vector from Fig. 13.3 is separated into four components according to when the
pap operon is in (top-left) g1, (top-right) g2, (bottom-left) g3 and (bottom-right)
g4 (See also Fig. 13.3).
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Figure 13.5: The probability density vector of the population of PapI as calculated
in Example 2 at final time tf = 10s. All cells that contain more than twenty
molecules of PapI are considered to be ON. (See also Figs. 13.3 and 13.4).

[1.376, 1.383]× 10−4. For comparison, five sets of 105 SSA simulations–each with

a different seed for the random number generator compute the the probability of

having more than twenty molecules of PapI to be {1.9, 2.0, 1.1, 1.4 and 1.3}×10−4.

For the five sets of 105 SSA simulations, the relative error ranged between -20 to

+45 percent. For comparison, the relative error of the FSP is guaranteed to be in

the range -0.46 to 0.00 percent (more than three orders of magnitude more precise

than 105 simulations of the SSA). Figure 13.6 (light line) plots the average number

of times the SSA produces the result that there are more than twenty molecules of

PapI at time tf as a function of the number of simulation runs. The horizontal line

in the figure shows the probability as calculated using the FSP algorithm, where

the thickness of the line exceeds the difference between the computed upper and

lower bounds. As in the previous example, more SSA simulations allow for better
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accuracy at the cost of additional computational expense. For a comparison of

the methods’ efficiency and accuracy, Table 13.3 provides the computational time

and relative error in the prediction of the pap OFF to ON switching rate after ten

thousand, one hundred thousand, and one million simulations. From the table

one can immediately see that the performance of the FSP is far superior to that

of the SSA for this example.

As above, the use of time leaping methods can do little to improve the com-

putational efficiency of the SSA for this example. In this case, negative molecular

populations will always result if any Lrp binding/unbinding reaction is simulated

twice consecutively before a different Lrp binding/unbinding event. In order to

avoid impossible populations, therefore, one must use an adaptive step size algo-

rithm, and no τ leap may be allowed to include more than a single reaction from

the set R1 to R8. In the SSA simulations, more than one quarter of all of the

reactions involved operon configuration changes. Therefore, if we make the liberal

assumptions that a single τ leap step is as fast as a single SSA step, and that there

is exactly one R1 to R8 reaction included in each τ leap, then a τ leaping method

can boost the speed of the SSA by a maximum factor of less than four. It must

be mentioned, however, that PapI production and degradation reactions can also

result in excessively large changes in propensity functions, thus further restricting

the size of allowable time leaps. In practice τ leap steps may take far longer to

compute than individual SSA steps, and one would expect that τ leaping will

provide far less benefit over the SSA in this example. As in the previous example,

it does not matter what type of τ leaping is chosen (Poisson or Binomial); the leap

size will be similarly restricted in each. As an example of the failure of τ leaping

to handle this example, we have again utilized StochKit [80], and we have set the
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Figure 13.6: Predictions of OFF to ON switching rate using the SSA (light grey)
and an explicit, adaptive step size τ leaping algorithm (dark grey) from StochKit.
The bottom axis shows the number of conducted simulations, and the top axis
shows the computational time required for that number of simulations. As the
number of simulations increases, the computed probability converges toward the
more precise FSP solution. For comparison, the thickness of the horizontal line
corresponds to the upper and lower bounds on the switch rate as computed in less
than four seconds using the FSP algorithm.

program to use an adaptive explicit τ leaping algorithm [17]. For this algorithm,

computation took about fourteen seconds for 105 runs (the same as the direct

step SSA), and the accuracy was similar to that of the SSA. The dark grey line in

Figure 13.6 illustrates the convergence of the τ leaping predictions as more and

more simulations have been conducted (see also Table 13.3).
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Reactions
Number Stoichiometry Rate Constant(c/mu) Units
RT X2 → X2 + r 1000 s−1

RD r → ∅ 100 s−1

Parameters and Initial Conditions
Parameter Notation Value
Initial Catalyst Protein ro 5
Initial pap operon State g1 –
Initial State jo = 4ro + 1 21
Initial pdv P(XJo ; 0) = 1 –
Allowable Error in pdv ε 10−3

Table 13.2: Reactions and parameters used in the SSA and exact FSP solutions for
the Pap-Pili epigenetic switch in which the population of the regulatory protein
PapI may change according to stochastic translation and degradation events. See
also Table 13.1.

Method # Simulations Time (s) Relative Error in switch rate

FSP Does not apply. < 4 < 0.5%

SSA 104 ≈ 1.4 100%
SSA 105 ≈ 14 23%
SSA 106 ≈ 140 6.8%

τ leaping 104 ≈ 1.4 118%
τ leaping 105 ≈ 14 13%
τ leaping 106 ≈ 140 16%

Table 13.3: A comparison of the efficiency and accuracy of the FSP, SSA, and
adaptive explicit τ leaping methods for the prediction of the pap OFF to ON
switching rate. Using the FSP, it takes less than four seconds to guarantee that the
OFF to ON switch rate is within the interval [1.376, 1.383]×10−4, a relative error of
less than 0.5 percent. The table shows the results of a single set of 106 statistically
independent simulations for each the SSA and the τ leaping methods. The relative
errors have been calculated after 104, 105, and 106 simulations. Simulation sets
with different random number generator seed values will produce different results
(some are better and some are worse–results not shown). In contrast, every run
of the FSP algorithm always produces the exact same result. All codes are run on
the same 1.50GHz Intel Pentium 4 processor running a Linux environment. See
also Figure 13.6.
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Chapter 14

Applying the FSP to the Toy
Heat Shock Model

When a cell’s environment changes, that cell must either adapt or perish. As a

result, biological systems have evolved many intricate mechanisms to deal with the

frequent changes that occur in complex environments. One particular such system

that has received a lot of recent attention is the cellular heat shock response in E.

coli. At higher than normal temperatures, cellular proteins often fold incorrectly,

and are no longer able to perform their functions. In order to survive, the cell

avoids this outcome by producing molecular chaperones and proteases, which

refold denatured proteins and degrade irreversibly aggregated proteins. At the

heart of the heat shock response mechanism in E. coli is the formation of the σ32-

RNAP complex [25], shown in Fig. 14.1. Here a simplified model for σ32-RNAP

formation illustrates how one can combine the reduction methods in Chapters 7,

9 and 10 to significantly increase the power of the FSP algorithm.

The simple Heat Shock regulatory mechanism is comprised of three reactions,

s1 ! s2 → s3, (14.0.1)
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Figure 14.1: Schematic representation of the Toy Heat shock model [25]. Species
s1, s2 and s3 represent the σ32-DnaK complex, free σ32 and the σ32-RNAP com-
plexes, respectively. In the model the free amounts of DnaK and RNAP are
assumed constant and are lumped into the reaction rates. The solid arrows cor-
respond to rapid binding and unbinding of DnaK and free σ32. The dashed lines
correspond to infrequent irreversible binding of RNAP and σ32.

where s1, s2 and s3 correspond to the σ32-DnaK complex, the σ32 heat shock

regulator and the σ32-RNAP complex, respectively. For this model, the propensity

functions of the three reactions are given by

a1 = c1[s1], a2 = c2[s2], and a3 = c3[s2], (14.0.2)

where the bracket notation [.] refers to the integer population of the enclosed

species. This model of the heat shock subsystem has been analyzed before using

various computational methods including Monte Carlo implementations [15, 24,

78, 71, 69].

Typically, the relative rates of the reactions are such that the reaction from s2

to s1 is by far the fastest (a2 , a1 and a2 , a3), and σ32 molecules infrequently

escape from DnaK long enough to form the σ32-RNAP complex. The purpose of

this mechanism is to strike a balance between fixing the damage produced by heat

and saving the cell’s resources, as a significant portion of cell energy is consumed

when producing heat shock proteins. For this example, the parameters are set as
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Figure 14.2: (a) Two dimensional integer lattice representing possible configura-
tions of the toy heat shock model. Here s2 and s3 are populations of free σ32

molecules and σ32-RNAP compounds, respectively, while s1 is the population of
σ32-DnaK compounds. Reactions s1 ! s2, are represented by bidirectional hori-
zontal arrows and reactions s2 → s3 is represented with diagonal arrows. The total
number of σ32 is constant, so the chemical state of the system is uniquely defined
by s2 and s3 alone. (b) The same lattice after applying the finite state projection.
Unlikely states have been aggregated into a single sink state. Each horizontal row
of configurations is separated from the rest by the slow reaction 3 and then is used
to form the fast block generator Hi. (c) The slow manifold FSP that is found
by projecting the dynamics of each fast interconnected set onto its equilibrium
distribution. In this new system, each fast interconnected configuration subset is
represented by a single node. (d) Applying the interpolation-based projection to
the Slow Manifold FSP system. Here the shaded nodes are interpolation points
on which the dynamics are now to be approximated.
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follows:

c1 = 10, c2 = 4× 104, c3 = 2,

s1(0) = 2000, s2(0) = s3(0) = 0.

With only the reactions above, the total number of σ32–free or in compounds–is

constant, so that s1+s2+s3 = K. With this constraint, the reachable states of this

three species problem can be represented on a two dimensional lattice as shown

in Fig. 14.2a. The goal in this study is to find the probability distribution of the

population of s3 at time tf = 300s, and seven different methods have been used

to achieve this goal: (1) the original finite state projection method (FSP), (2) the

FSP with a multiple time step algorithm (MTI-FSP) [69], (3) the FSP with the

slow manifold assumption (SM-FSP), (4) the FSP with the interpolation based

reduction (I-FSP), (5) the FSP with first the slow manifold assumption and then

an interpolation based reduction (SM/I-FSP), (6) the basic stochastic simulation

algorithm (SSA), and (7) the SSA with the slow manifold approximation (SM-

SSA). Fig. 14.4 shows the distribution as computed with each of these methods,

and Table 14.1 summarizes the efficiency and accuracy of each method. First

however, it is useful to describe the full CME.

Method 0: Full CME. The full master equation for this problem can be

arranged using the following enumeration scheme;

i(s1, s2, s3) = s3(K + 1) + s2 + 1,
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which has the inverse

xi =





s1(i)

s2(i)

s3(i)




=





K −mod(i− 1, K + 1)− floor((i− 1)/(K + 1))

mod(i− 1, K + 1)

floor((i− 1)/(K + 1))




,

where mod(x, y) is the remainder after dividing x by y, and floor(x) rounds x down

to the nearest integer. With this enumeration scheme and the propensity functions

and stoichiometry from above, one can form the the infinitesimal generator A as:

Aij =






−c1s1(i)− c2s2(i)− c3s2(i)

c1s1(j)

c2s2(j)

c3s2(j)

0

for (i = j)

for j s.t. xi = xj + [−1, 1, 0]T

for j s.t. xi = xj + [1,−1, 0]T

for j s.t. xi = xj + [0,−1, 1]T

Otherwise






.

(14.0.3)

For the initial conditions above, the reachable configuration set is the set of all

configurations such that s1 + s2 + s3 = K. For K = 2000, one can show that the

number of points in this set is

K∑

s3=0

K−s3∑

s2=0

1 =
K∑

s3=0

s3 = 2, 001, 000,

and therefore, the full CME is too large to be solved exactly, and an approximation

is necessary.

Method 1: FSP. Applying the original Finite State Projection method (see

Chapter 5) allows one to significantly reduce the order of the problem and achieve a

manageable solution at least for small time intervals (t ≤ 300s). With a projection
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such that that s2 ≤ 12 and s3 ≤ 342, the FSP solutions provides an accuracy

guarantee of 3.0× 10−5, and takes 750 seconds.

Method 2: MTI-FSP. By separating the time interval into 150 equal time

intervals as described in Chapter 9 and [69], one can significantly improve the

efficiency of the FSP for this system. Rather than compute a 4459th order matrix

exponential, one can instead acquire a solution by computing 70 different matrix

exponentials each of which is 195th order or smaller. The total required time of

this approach was 40.2 seconds, and the maximum error is guaranteed to be less

than 1.7× 10−4.

While the accuracy of the multiple time interval FSP is guaranteed, the effi-

ciency of the algorithm depends upon the chosen interval size. Fig. 14.3 illustrates

some of the subtleties of this tradeoff by plotting the size of the largest exponen-

tiated matrix, the number of matrix exponentials, and the computational time

all as functions of the number of time intervals (bottom axis) and the interval

length (top axis). As we use more time intervals, the probability distribution

has less time to disperse between one interval and the next, and the required

matrix exponentials are smaller as shown in Fig. 14.3a. However, because the

matrix dimension is a discrete integer quantity, this decrease is stepwise rather

than smooth, and a large range of interval lengths may require the same matrix

size. If an interval length is at the low end of that range, the matrix exponentials

required to get each Ei are often slightly more precise than is absolutely neces-

sary, and are therefore more likely to provide other Ej’s as well–fewer exponential

computations are necessary. Conversely, if an interval length is at the high end

of the range for a given matrix size, fewer Ej’s will come from each exponential

computation–more exponential computations are necessary. This trend is clear
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when one compares Fig. 14.3a to 14.3b.

In order to show how these concerns affect the computation, we have broken

the total computational cost in Fig. 14.3c into three components. The first cost is

that of computing the matrix exponentials; the second cost is the combined cost

of storing the vectors {Ei} and then updating the solution from one interval to

the next; and the third cost is the cost of initializing the first projection set with a

set of 20 SSA runs. For tf = 300s, this tradeoff is optimized for 360 time intervals

corresponding to a interval length of τ ≈ 0.83s. To obtain the solution with this

time interval, the algorithm needed to compute 122 matrix exponentials of size

121× 121 or smaller, and the computation takes about 31.4s.

Method 3: SM-FSP. In the Heat Shock model, the first two reactions, s1 → s2

and s2 → s2, are much faster than the third. These fast reactions are used to

define sets of fast interconnected configurations, as described in Chapter 7. In Fig.

14.2b, these sets are the horizontal rows of configurations. Using the slow manifold

projection discussed above and in [78, 71], each fast interconnected configuration

set can be collapsed to a single point to form the 1D lattice Markov chain shown

in Fig. 14.2c. The reduced problem can now be solved as a system of only 343

ODEs, which takes only 0.94s to solve including reduction time.

Method 4: I-FSP. The interpolation based solution to the FSP (see Chapter

10) uses a sparse grid where s2 is in the set {0,1,2,3,4,5,6,7,8,10,12} and s3 is

in the set {0,1,2,3,5,8,11,14,{14+8n)}}. This enables the reduction of the 4459th

order FSP solution to a set of 539 ODEs. The reduced problem takes 6.1s to

compute (including reduction time), and provides a solution with a maximum

error of 7.7× 10−4. The choice of interpolation points may not have provided the

best possible reduction; better choices in terms of accuracy and efficiency may
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exist and are left as a topic for further research.

Method 5: SM/I-FSP. For a fifth solution scheme, the interpolation based

reduction of method 4 is combined with the slow manifold model of method 3.

From the reduced 1D lattice in Fig. 14.2c, this reduced model includes only the grid

points where s3 is in the set {0,1,2,3,5,8,11,14,{14+8n}}. The resulting reduced

system contains only 49 ODEs and takes less that 0.04 seconds to solve (after the

reduction), but its results are nearly indistinguishable from the full system in that

the maximum error is only 8.2× 10−4.

Method 6: SSA. The sixth method to generate the probability distribution

is Gillespie’s stochastic simulation algorithm [35]. A single run of the SSA takes

about 20 seconds to complete. 104 simulations would take over 50 hours and have

not been computed for this report.

Method 7: SM-SSA. As discussed above, the toy heat shock model exhibits

two significantly different time scales. Therefore, in addition to being an excellent

candidate for the analytical FSP-SM method, the heat model is also amenable

to Monte Carlo algorithms that utilize the same time scale separation reduction.

One such approach is to reduce the system to its slow manifold as in method 3,

but then use the SSA. This method, for which we use the acronym SSA-SM is very

similar to the methods in [82, 43, 15]. This SSA-SM takes only 0.1s per run and

is 170 times faster than the original SSA, but it still requires many realizations

before the solution to the CME will sufficiently converge. A set of 103 runs take 84

seconds to compute and yields a maximum error of about 0.012. By increasing the

number of runs by a factor of one hundred, this implementation takes 100 times

longer and yields an error less than ten times better as summarized in Table 14.1.
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Figure 14.3: Trade off between more and fewer time intervals in the Multiple
Time Interval FSP (MTI-FSP) algorithm solution for the toy heat shock model at
a final time of tf = 300s. The following are plotted as function of the number of
intervals: (top) the size of the largest required matrix exponential computation,
(middle) the number of matrix exponential computations performed, (bottom)
the computational time required for the MTI-FSP algorithm split into three com-
ponents: the smallest is the cost of using 20 SSA to initialize the projection for
the first time interval, the next smallest is total cost of computing matrix expo-
nentials, and the largest is the remaining overhead costs (primarily data storage
and retrieval). All computations have been performed in Matlab 7.2 on a Dual 2
Ghz PowerPC G5.
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Longer Time Intervals. If we were to consider longer time intervals for the

toy heat shock model, the size of the projection would also need to increase. For

an interval of 1200s, one needs to include every configuration such that s2 ≤ 12

and s3 ≤ 1022. This includes over 13000 configurations with one ODE for each.

While computing a system of that size is often possible using Krylov based so-

lutions such as Roger Sidje’s expokit [90], it is beyond the capabilities of the

chosen software (Matlab’s expm(.) routine), especially when there is significant

numerical stiffness in the ODE’s. In this case the reduced solutions are not only

beneficial, they are necessary. Fig. 14.4(b) shows the distribution of the number

of s3 molecules as computed with the various FSP reduction schemes. In the

interpolation-based FSP reductions, a slightly coarser mesh is applied, which in-

cludes all configurations where s3 is in the set {0,1,2,3,5,8,11,14,{14+12n}}. Once

again, all FSP based methods provide results that are virtually indistinguishable

from the true solution, but they reach these results in far less time. In particular,

the reduced model formed by projecting the system onto its slow manifold and

then performing the interpolation-based projection results in a model of only 92

ODEs which takes less than one tenth of a second to solve.
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For final time tf = 300s
Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 4459 750s 750s < 3.0× 10−5

MTI-FSP 195 - 40.2s < 1.68× 10−4

SM-FSP 343 0.25s 0.94s ≈ 5.1× 10−4

I-FSP 539 5.1s 6.1s ≈ 7.7× 10−4

SM/I-FSP 49 0.04s 0.78s ≈ 8.2× 10−4

104 SSA Results would take more than 55 hours.
103 SM-SSA - - 84.1s ≈ 0.0116
104 SM-SSA - - 925s ≈ 3.4× 10−3

105 SM-SSA - - 9360s ≈ 1.6× 10−3

For final time tf = 1200s
Method Matrix Size JODE Jtotal ∞-norm Error
FSP 13274 Exceeds machine capabilities
MTI-FSP 325 - 253s < 1.2× 10−4

SM-FSP 1023 4.66s 10.66s ≈ 1.2× 10−4

I-FSP 1012 40.5s 44.6s ≈ 6.1× 10−4

SM/I-FSP 92 0.09s 6.19s ≈ 5.7× 10−4

104 SSA Results would take more than 180 hours.
103 SM-SSA - - 272s ≈ 9.9× 10−3

104 SM-SSA - - 3000s ≈ 3.5× 10−3

105 SM-SSA - - 2.99× 104s ≈ 1.2× 10−3

Table 14.1: Comparison of the computational efficiency and accuracy of various
solutions of the chemical master equation for the the Toy Heat Shock model.
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Figure 14.4: The probability distribution of the amount of the σ-RNAP complex
formed at (a) tf = 300s and (b) tf = 1200s as computed using the toy heat shock
model. Different analytical reductions have been applied to the chemical master
equation, and each provides results that are virtually indistinguishable from the
full FSP solution. See also Table 14.1.
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Chapter 15

Applying the FSP to the Genetic
Toggle Switch

One of the most important genetic regulatory problems is that of stochastic

switching. Two identical cells within the same environment and with the same

initial conditions may express wildly different phenotypes; a few such examples

include the pap (pili) regulatory switch in E. coli [66] as well as cell fate decisions in

developing organisms. Alternatively, a cell may switch from one state to another

as has been shown in previous stochastic models of the lysis-lysogeny decision

of phage lambda [6]. This chapter considers a simple stochastic version of the

genetic toggle system constructed and presented by Gardner, Cantor and Collins

[31]. Fig. 15.1 illustrates this genetic regulatory system, which is comprised of

two promoters each of whose products inhibits the other promoter. The signals of

the network are the populations of the two repressors, s1 and s2. These repressors

react according to the simple production and degradation reactions:

∅ ! s1 ∅ ! s2,
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Figure 15.1: Schematic of the toggle model comprised of two inhibitors: s1 inhibits
the production of s2 and vice-versa.

where the degradation rates (left arrows) of s1 and s2 are δ1 and δ2, respectively,

and the synthesis rates (right arrows) of s1 and s2 depend upon the populations

[s2] and [s1], respectively, and are given by:

α([s2]) =
α1

1 + [s2]β
, and β([s1]) =

α2

1 + [s1]γ
,

respectively.

For the first analysis of the toggle switch, consider the following set of param-

eters:

δ1 = δ2 = γ = 1, α1 = 25, α2 = 30, β = 1, (15.0.1)

and the initial condition of zero for both species s1 and s2. Three methods have

been used to find the probability distribution at the time tf = 104s: (1) the

finite state projection method (FSP), (2) the interpolation-reduced FSP (I-FSP),

and (3) the stochastic simulation algorithm (SSA). Other methods have been

considered, but an initial examination of the system presents no clear separation

between time scales, so the slow manifold based reductions (either for the FSP or

for KMC algorithms) have not be considered. For each method, the accuracy is

measured by the maximum error in the computed distribution, and the efficiency is

measured by two costs: JODE: the time required to compute the solution after the
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system reduction, and Jtotal the total time required to find and solve the reduced

system. Each of these costs can be important in different situations: Jtotal is

the stand-alone cost of solving this problem only once, and JODE represents the

repetitive cost of solving the system as part of larger more complex problem. With

these metrics accuracy and efficiency of these different methods is discussed below

and summarized in Table 15.1.

Method 1: FSP. In order to use the original FSP method, one must first choose

a configuration subset on which to perform the projection. Fig. 15.2 illustrates

one such set chosen to include all configurations such that [s1] ≤ 64, [s2] ≤ 88,

and [s1][s2] ≤ 220. For this configuration subset, the finite state projection of the

CME is comprised of 1014 configurations, which took about 8 seconds to solve.

Fig. 15.3(a) provides a contour map of the distribution for the full FSP approach

for this first parameter set; Fig. 15.4(a,b) show the same probability distributions

for the populations of s1 and s2, respectively. In terms of accuracy, the full FSP

implementation yielded a maximum error less than 5.3× 10−5.

Method 2: I-FSP. Using the methodology in Chapter 10, one can project

the finite state system from the previous method onto a grid defined by integers

distributed as follows. The first 8 are separated by one point: {0, 1, . . . , 7}; the

next 8 are separated by two points: {8, 12, . . . , 22}; the next 8 by four points:

{24, 28, . . . , 52}; and the remaining points are separated by eight points up un-

til the maximum value is reached. Each of these grid points is illustrated in

Fig. 15.2 by a single dot. Figures 15.3(b) and 15.4(a,b) show the distribution con-

tours as computed using the interpolation-based model reduction approach. From

these figures, one can see that there is very little observable difference between

the full FSP results and the interpolation-reduced FSP results. However, the
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Figure 15.2: Projection used for the genetic toggle model for parameter set
(15.0.1). Here the finite state projection is first applied to remove the unlikely
configurations and reduce the system to a set of 1014 ODEs, then the distribution
of the remaining configurations is projected to a lower dimensional space for a set
of 353 ODEs. The probability density is approximated assuming linear dynamics
for the distribution at each point, and the full distribution is approximated via
interpolation.

interpolation-based approach required solving about a third as many ODEs and

took less than a quarter of the time to complete, including the model reduction.

The interpolation-based reduction had a maximum error of about 2.9× 10−4.

Method 3: SSA. For comparison with a typical Monte Carlo algorithm, the

SSA [35] has also been run. After 103 simulations of the SSA, the total compu-

tational time was almost two hours, and the maximum error was about 30 times

greater than that of the other methods. While approximations to the SSA, such

as τ leaping, may significantly speed up the computational time, they can do little

to improve the accuracy of solution.

Different Parameter Sets. To extend the comparison of the three methods,
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two additional parameter sets have been considered:

δ1 = δ2 = γ = 1, α1 = 80, α2 = 100, β = 1, (15.0.2)

and

δ1 = δ2 = γ = 1, α1 = 100, α2 = 25, β = 2.5, (15.0.3)

which are more computationally difficult to solve (for all methods) because more

reactions occur, and the system tends to reach a larger portion of the configuration

set. For parameter set (15.0.2), the chosen FSP solution includes all configurations

such that [s1] ≤ 120, [s2] ≤ 200 and [s1][s2] ≤ 700. For the original FSP algorithm

this requires solving an 3340th order ODE and takes 288s to compute, but with

the grid described for the previous set of parameters, the system is reduced to 665

ODEs and took only eight seconds to compute. Comparable improvements were

also found for the third set of parameters for which the FSP solution includes

every configuration such that [s1] ≤ 176, [s2] ≤ 96 and [s1][s2] ≤ 500. Fig. 15.5

shows the probability distribution of species s2 for at the time 104s for both pa-

rameter sets (15.0.2) and (15.0.3) as computed with the FSP and the interpolation

reduced FSP methods, and Table 15.1 summarizes the accuracy and efficiency of

the same implementations. Once again there is very good agreement between the

two solutions. For parameter sets (15.0.2) and (15.0.3), single runs of the SSA

took 20.8 and 17.4 seconds, respectively. At these rates, 104 simulations take two

days for each set yet and yield ten times worse convergence than any of the other

methods.
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 Reduced FSP Results

Figure 15.3: Contour plots of the probability distributions of the reachable config-
urations of the Genetic toggle regulatory network with parameters in (15.0.1). We
begin with a known initial condition of s1 = s2 = 0 and compute the distributions
at tf = 104s. Computations have been made using two analytical solution tech-
niques: (a) The full, original FSP implementation. (b) The interpolation-based
reduction of the FSP.
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Figure 15.4: An alternate representation of the probability distributions of the
configurations reachable in the genetic toggle model with parameters in (15.0.1)
(see also Fig. 15.3). (a) The probability density for species 1, (b) The probability
density of species 2. The density as computed with the full FSP equations is rep-
resented by the smooth line, and the density as computed with the interpolation
based reduction approach is represented with circles, and the density as computed
with 104 runs of the SSA is given by the jagged line.
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For Parameters (15.0.1) and final time tf = 104s
Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 1014 7.27s 7.41s ≤ 5.3× 10−5

FSP-I 353 0.89s 1.40s ≈ 2.9× 10−4

SSA (103) - - 6920s ≈ 8.9× 10−3

SSA (104) - - 7.1× 104s ≈ 3.4× 10−3

For Parameters (15.0.2) and final time tf = 104s
Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 3340 287s 288s < 6.4× 10−5

FSP-I 665 7.56s 8.75s ≈ 8.1× 10−5

SSA (104) - - 2.2× 105s ≈ 2.9× 10−3

For Parameters (15.0.3) and final time tf = 104s
Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 2404 93.2s 93.8s < 6.5× 10−6

FSP-I 556 4.09s 5.02s 8.5× 10−4

SSA (104) - - 1.7× 105s 5.6× 10−3

Table 15.1: Comparison of the computational efficiency and accuracy of three
different solutions of the chemical master equation for the stochastic genetic toggle
model. For our analysis, we begin at a known initial condition of s1 = s2 = 0
and compute the distributions at tf = 104s. Two computational costs are given:
JODE–the time required to solve the reduced system of ODEs and Jtotal–the total
time required to reduce and solve the system. See also Figs. 15.3-15.5.
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Figure 15.5: The probability distribution of the population of s2 molecules in
the genetic toggle model for parameter sets (15.0.2). The densities as computed
with the full FSP equations are represented by the solid lines, and the densities
computed with the interpolation based reduction approach are represented with
circles.

15.1 FSP Switch Rate Analysis

This section examines the usefulness of the FSP absorbing sink in the analysis

of switching behavior of Gardner’s gene toggle model [31] with the parameter set:

δ1 = δ2 = γ = 1, α1 = 16, α2 = 30, β = 2.5. (15.1.1)

For these parameters, the system exhibits two distinct phenotypes: Define the cell

to be OFF when the population of s1 exceeds 5 molecules and s2 is less than 15

molecules, and ON when the population of s2 exceeds 15 molecules and s1 is less

than 5 molecules. Each of these phenotypes is relatively stable–once the system

reaches the ON or OFF state, it tends to stay there for some time. For this study,

the system begins with a population s1 = s2 = 0, and the goal is to analyze the

subsequent switching behavior.
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Q1. After the process starts, the system will move within its configuration

space until eventually the cell turns OFF or the cell turns ON. What percentage

will choose to turn ON first (s2 exceeds 15 before s1 exceeds 5)?

One can use the methodology outlined in Section 11.1 to analyze this initial

switch decision. Let XJ include all states such that s1 ≤ 5 and s2 ≤ 15. There

are only two means through which the system may exit this region: If s1 = 5 and

R1 occurs (making s1 = 6), then the system is absorbed into a sink state GOFF .

If s2 = 15 and R3 occurs, then the system is absorbed into a sink state GON .

The master equation for this Markov chain has the form of that in (11.1.1) and

contains 98 states including the two absorbing sinks. By solving this equation

for the given initial condition, one can show that the probability of turning ON

first is 78.1978%. Thus, nearly four-fifths of the cells will turn ON before they

turn OFF. The asymptotes of the dashed lines in Fig. 15.6b correspond to the

probabilities of that the system will first turn ON and OFF, respectively.

Q2. Find the times t50 and t99 at which 50% and 99% of all cells will have

made their initial decision to turn ON or OFF?

To solve this question, one can use the same Markov chain as in Q1, and

search for the times, t50 and t99, at which GOFF (t50) + GON(t50) = 0.5 and

GOFF (t99) + GON(t99) = 0.99, respectively. This has been done using a sim-

ple line search, which found that t50 = 0.5305s and t99 = 5.0595s. In Fig. 15.6b

these times correspond to the points in time where the dashed line labeled “First

Switch” crosses 0.5 and 0.99, respectively.

Q3. What is the time at which 99% of all cells will have turned ON at least
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once?

Because one must include the possibility that the cell will first turn OFF and

then turn ON, the solution for this question requires a different projection. Let X

be the set of states such that s1 ≤ 50, s2 ≤ 105, and s1s2 ≤ 300. Furthermore, let

the projection, XON ′ include all states in X that are not ON (s1 < 15 or s2 > 5).

As time passes, probability measure will leave this region in two manners: either

it exits in to the aggregated ON sink (GON) or it exits out of X altogether in to a

second absorbing sink Gerr, which results in a loss of precision. This error comes

into play as follows: If t1 is defined as the time at which GON(t1)+Gerr(t1) = 0.99,

and t2 is defined as the time at which GON(t2) = 0.99, then the time, t99, at which

99% turn ON is bounded by t1 ≤ t99 ≤ t2. For the chosen projection, this bound is

very tight yielding a guarantee that t99 ∈ [1733.3153, 1733.3157]s. For comparison,

104 runs of the SSA give a much less accurate estimate of t99 ≈ 1735.7. Similarly,

one can use a projection XOFF ′ , which includes all points in X that are not OFF,

to find that it will take between 800.495 and 800.487 seconds until 99% of cells

will turn OFF (compared to t99 ≈ 827s found with 104 SSA runs). In addition,

median times, t50 have been computed and are listed in Table 15.2.

Note that the times for Q3 are very large in comparison to those in Q2; this

results from the fact that the ON and OFF regions are relatively stable. This trait

is evident in Fig. 15.6, where the dashed lines correspond to the time of the first

ON (or OFF) decision provided that the system has not previously turned OFF (or

ON). Since about 78% percent turn ON before they turn OFF, this dashed ON

curve asymptotes at about 0.78 (see Q1 and Q2). On the other hand, the solid

lines corresponds to the times for the first ON (or OFF) decision whether or not

the system has previously turned OFF (or ON). The kinks in these distributions,

169



where the solid and dashed curves separate, result from the stability of the two

regions region. In particular, the solid ON curve exhibits a more severe kink due

to the fact that the OFF region is more stable than the ON region (compare solid

lines).

The projections XON ′ and XOFF ′ used here included 715 and 782 states re-

spectively. While systems of this size are still relatively inexpensive to analyze,

the computational cost will build significantly should we desire to add more com-

plexity. Using balanced truncation, each of these systems can be reduced to 10th

order with very little loss in accuracy (compare solid lines and circle markers in

Fig. 15.6, and see Table 15.2).

Q4. What is the distribution for the round trip time until a cell will first turn

ON and then turn OFF?

In order to answer this question one may use the round-trip methodology from

the latter half of Section 11.2. Intuitively, this approach is very similar to that

depicted in Fig. 11.2b, except that the top and bottom portions of the Markov

chain are not identical and the final destination is a region of the chain as opposed

to a single point. Also, since the Markov process under examination is infinite

dimensional, one must first apply a finite state projection to reduce this system

to the finite set X described in Q3. For the system’s outbound journey into the

ON region, we use the projection XON ′ from Q3. After the system turns ON, it

begins the second leg of its trip to the OFF region through a different projection

XOFF ′ . When the system reaches the OFF region on the second leg, it is absorbed
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into a sink G(t). The full master equation for this process can be written as:





Ṗ1
ON ′(t)

Ṗ2
OFF ′(t)

Ġ(t)

ε(t)





=





AON ′ 0 0 0

B2C1 AOFF ′ 0 0

0 B3C2 0 0

BεC1 BεC2 0 0









P1
ON ′(t)

P2
OFF ′(t)

G(t)

ε(t)





, (15.1.2)

where AON ′ and AOFF ′ are the corresponding principle sub-matrices of the stan-

dard infinitesimal generator defined in (2.0.5). The matrices C1 and B2 are defined

as in (11.2.3) and (11.2.4) above and account for the transitions from the states

in XON ′ to the corresponding states in XOFF ′ . The vector B3C2 corresponds to

the transitions that exit XOFF ′ and turn OFF (completing the full trip). The

last two vectors BεC1 and BεC2 correspond to the rare transitions that leave the

projected space, X, and therefore contribute to a computable error, ε(t) in the

analysis.

The solution of this system for the scalar G(t) then gives us the joint proba-

bility that (i) the system remains in the set XON ′ until it enters the ON region

at some time τ1 ∈ [0, t), and (ii) it then remains in the set XOFF ′ until it enters

the OFF region at some time τ2 ∈ (τ1, t]. This distribution is plotted with the

dotted lines in Fig. 15.6. Once again we can see the effect that the asymmetry of

the switch plays on the times of these trajectories; the ON region is reached first

more often and the ON region is less stable, thus the ON then OFF trajectory

will occur significantly faster than the OFF then ON trajectory (compare dotted

lines in Fig. 15.6, and see Table 15.2).

In Fig. 15.6, the distributions have been computed in two different manners,

which yield nearly indistinguishable results (Compare lines and circles in Fig.
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15.6). First, the lines correspond to solutions where (15.1.2) has been solved

as a single large system of 1496 ODEs. In the second approach, the system

has been analyzed as two separate sub-systems defined by the triplets SY S1 =

(AON ′ ,PON ′ ,C1) and SY S2 = (AOFF ′ ,B2,B3C2). Each of these systems has

been reduced to 10th order using balanced truncation. Once reduced, the systems

were again reconnected resulting in a 22nd order approximation, consisting of the

two 10th order reduced systems plus G(t) and ε(t). Table 15.2 gives the predicted

median time t50 and the associated computational costs for these methods as well

as for 104 runs of the stochastic simulation algorithm (SSA). Both FSP methods

are far faster and more accurate than the corresponding SSA approach. Compar-

ing the full and reduced FSP approaches, note that the reduced systems retain a

high degree of the full systems’ accuracy, but the reduction itself is very expensive.

In these numerical experiments, we have used Matlab’s balanced truncation code

balancmr, which does not take advantage of the extreme sparsity of the FSP for-

mulation. With parallel algorithms for the balanced truncation of sparse systems,

such as those in [7], much of this computational cost may be recovered.

Q5. What is the probability that the system will be (i) ON at some point

t1 ∈ [a1, b1] = [100s, 110s], then (ii) OFF at some point t2 ∈ [a2, b2] = [200s, 210s]

and finally (iii) ON at t3 = 300s?

To answer this question we again use the projections, X, XON ′ and XOFF ′

from above. In terms of the notation used in Section 11.2.3, we are seeking to

compute PON{C3}(t3), where

{C3} = {(x0, 0); (XON , [100, 110]); (XOFF , [200, 210])}.
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This computation is done recursively as follows:

P{C1}(a1) = exp(Aa1)P(0)

P{C2}(a2) = exp(A(a2 − a1))DON{PON{C1}(a1)}+
∫ b1

a1

exp(A(a2 − τ))y1(τ)dτ

y1(τ) = DON{AON,ON ′ exp(AON ′(τ − a1))PON ′{C1}(a1)}

P{C3}(a3) = exp(A(t3 − a2))DOFF {POFF {C2}(a2)}+
∫ b2

a2

exp(A(t3 − τ))y2(τ)dτ

y2(τ) = DOFF {AOFF,OFF ′ exp(AOFF ′(τ − a2))POFF ′{C2}(a2)}.

Using this approach, one can compute the probability of the first measurement:

|PON{C1}(100)|1 = 0.543,

|POFF{C2}(200)|1 = 0.174, and

|PON{C3}(300)|1 = 0.0266.

Also, by keeping track of the amount of the probability measure that exits X

through each stage, one can obtain a guarantee that these computations are ac-

curate to within relative errors of 9.1 × 10−6, 4.9 × 10−5, and 3.3 × 10−4 per-

cent, respectively. The total computational effort is 63.2s. For comparison 104

SSA runs take 2020s to complete this same study, and provide an estimate for

|PON{C3}(300)|1 of 0.0270, which is a relative error of 1.63%.
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Figure 15.6: Probability densities (a) and cumulative distributions (b) of the times
of switch decisions for a stochastic model of Gardner’s gene toggle switch [31]. The
dashed lines correspond to the probabilities that the first switch decision will be
to enter the ON or OFF region. Note that the system will turn ON first for about
78% of trajectories (Q1); the rest will turn OFF first–see asymptotes of dashed
lines in (b). A third dashed line in (b) corresponds to the cumulative distribution
until the time of the first switch decision (Q2). The solid lines correspond to the
probabilities for the first time the system will reach the ON (or OFF) region (Q3).
The dotted lines correspond to the times until the system completes a trajectory
in which it begins at s1 = s2 = 0, it turns ON (or OFF), and finally turns OFF (or
ON) (Q4). Two methods have been used in these analyses: the lines correspond
to the original FSP solution, and circle markers denote the reduced order model
solutions (See also Table 15.2).
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Single Stage Trajectories
First Switch to OFF

Method Jred Jsolve Jtotal t50 % Error
FSP - 31.0s 31.0s 81.952s < 2× 10−5

FSP-RED 111.8 1.85s 113.7s 81.952s < 4× 10−5

104 SSA - 2068s 2068s 78.375s ≈ 4.3

First Switch to ON
Jred Jsolve Jtotal t50 % Error

FSP - 25.7s 25.7s 0.65655s < 1× 10−7

FSP-RED 133.5s 1.85s 135.3s 0.65656s < 8× 10−4

104 SSA - 404.4s 404.4 0.65802s ≈ 0.22

Two Stage Trajectories
First Completion of OFF then ON trajectory

Jred Jsolve Jtotal t50 % Error
FSP - 46.9s 46.9s 434.969s < 3.5× 10−5

FSP-RED 222.0s 1.95s 224.0s 434.968s < 4.5× 10−3

104 SSA - 3728s 3728s 441.394 ≈ 1.5

First Completion of ON then OFF trajectory
Jred Jsolve Jtotal t50 % Error

FSP - 51.0s 51.0s 167.530s < 6× 10−7

FSP-RED 241.4s 1.98s 243.4s 167.939 ≈ 0.24
104 SSA - 3073s 3073 166.860 ≈ 0.40

Table 15.2: Comparison of the computational efficiency of computing switch rates
of a Stochastic Gene Toggle Switch using three techniques to solve the chemical
master equation: the original Finite State Projection approach (FSP), the FSP
approach with balance truncation reduction (FSP-RED), and 104 runs of the SSA.
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15.2 Sensitivity Analysis of the Toggle Switch

To illustrate the use of the FSP for sensitivity analysis on the gene toggle

model, a nominal set of parameters has been chosen to be: α1 = 50, α2 = 16,

δ1 = δ2 = γ = 1 and β = 2.5. Fig. 15.7a shows the probability distribution as

computed using these parameters. By perturbing α1, α2 and β each by a small

amount (0.01 percent), one can compute the sensitivities of the distribution; see

Fig. 15.7(b-d). In this figure one can observe that an increase in α1 shifts the s1

dominant peak to a higher level, and decreases the probability at the s2 dominant

peak (see Fig. 15.7b). Similarly, an increase in α2 shifts the s2 dominant peak to

a higher level, and decreases the s1 peak (see Fig. 15.7c).

15.3 Identifying Gene Toggle Parameters

The toggle switch has been engineered in such a manner that it can be used

as a sensor of environmental influences such as radiation or external chemical sig-

nals [54]. Under certain environmental conditions the system will exhibit a bias

toward one phenotype; in others it is biased toward another phenotype. In [54]

two toggle mechanisms were constructed; one in which the SOS signaling pathway

detects DNA damage resulting from UV radiation or mitomycin C (MMC), and

the other which detects quorum sensing molecules. Here we concentrate on the

former mechanism, in which the two proteins species refer to λCI and LacI, re-

spectively. When UV or MMC are introduced into the system, the SOS pathway

results in RecA coproteases, which increase the degradation rate of λ CI. As a

result, for different amounts of UV or MMC, the trade-off between λCI and LacI

molecules will change. The output of the mechanism is GFP, which is assumed
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Figure 15.7: Analysis of probability distributions for the parameter set: α1 = 50,
α2 = 16, δ1 = δ2 = γ = 1 and β = 2.5. Results plotted at a time t = 5s. (a) Joint
probability density; (b) Relative sensitivity ∆P(t)/∆α1, (c) Relative sensitivity
∆P(t)/∆α2, (d) Relative sensitivity ∆P(t)/∆β.

177



to be expressed at the same level as LacI. The solid black lines in Fig. 15.8(a-c)

show the distribution of this output at three different levels of UV radiation (0, 6,

and 12 J/m2) taken from [54]; these three data sets are to be used as the training

set to identify parameters for the proposed model–see Table 15.3. In the model

below, the only difference between these three figures is in the λCI degradation

rate, which increases as a function of the applied UV.

The model of this toggle system consists of four basic reactions:

R1 ; R2 ; R3 ; R4

∅ → u ; u → ∅ ; ∅ → v ; v → ∅,

and the rates of these reactions, w(u, v, λ̄) = [w1(u, v, λ̄), . . . , w4(u, v, λ̄)] depend

upon the populations of the proteins u and v1 as well as a set of unknown param-

eters, λ̄ = [λ1, . . . , λp]. The number and meaning of the parameters vary with the

model. The goal of this study is to determine how well one can identify λ̄ from the

experimental data presented in [54]. We will show that one cannot uniquely iden-

tify all parameters from this data but we will propose a few additional experiments

with which one can complete this identification task.

For the identification study, we consider the following stochastic model in

which there are assumed to be four reactions, {Ri}, with non-linear propensity

1For convenience within this section, I have replaced s1 and s2 with u and v, respectively.
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functions, {wi(u, v)}:

R1 : ∅ → u; w1(u, v) = k11 +
k12

1 + (k13v)3

R2 : u → ∅; w2(u, v) = δuu

R3 : ∅ → v; w3(u, v) = k21 +
k22

1 + (k23u)3

R4 : v → ∅; w4(u, v) = δvv. (15.3.1)

In order to run the identification, one must first choose a cost function with which

to compare the numerical predictions with the experimental results of [54]. There

are many possibilities for this cost function, and each may provide slightly different

optimums. In this study, it is most important to capture the bimodal behavior

of the distribution. Let P( denote the experimental distribution and PFSP (λ̃)

represent the model distribution with parameter set λ̃. The comparison metric

we have chosen is:

J(λ̃) :=
∑

i

wi

∣∣∣P(
i −PFSP

i (λ̃)
∣∣∣ ,

where wi are the weights placed on each element of the distribution. These values

have been chosen as:

wi =






2 for i ∈ {0, 1, . . . , 20}

1 for i > 20





.

The rationale behind this choice of weight is to place more importance on the

model’s ability to capture the leftmost peak.

With this objective function, the identification has been conducted with many

randomly assigned initial guesses for the parameters. Two methods have been
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considered for the optimization: Matlab’s fminsearch and a generic simulated

annealing algorithm. Fig. 15.8(a-c) shows that the model can indeed capture the

experimentally observed behavior of the toggle system. The parameters found in

this identification are listed as Parameter Set 1 in Table 15.3. To further test

this model, all of the parameters with the exception of δu are fixed at the values

of Parameter Set 1, and we explore how the degradation of u changes with the

level of MMC. This is done by setting the target objective function to each of the

experimental distributions in Fig. 15.8(d-f) and searching for the best δu(MMC)

to match that distribution. Once again, we find the the parameters provide a

reasonable fit to the experimental data.

In the model, the degradation of u, which depends upon the level of UV

radiation or MMC level, is the only parameter that changes between Figs. 15.8a

through 15.8f. Fig. 15.9 shows the identified value of δu as function of the UV

or MMC levels. In [54] the effect of UV on the degradation rate is given by a

function

δu = α1 +
α2rn

α3 + rn
,

where αi are positive constants, r is the level of radiation in J/m2 and n is a hill

coefficient. Using this expression, and assuming a hill coefficient of b = 2, the

three values for δu can be used to find the set of {αi}:

{α1, α2, α3} = {0.533, 8.43, 94.8},

which is plotted as the solid green line in Fig. 15.9(left). It should be noted that
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Figure 15.8: Toggle switch GFP distributions in various conditions of DNA dam-
age. The solid black lines correspond to experimentally measured data [54], and
the blue and red dashed lines correspond to two fits with two different parameter
sets. Figs. (a-c) correspond to the distributions of GFP under three different
levels of UV radiation. These data sets were used as the training data to obtain
the parameter listed in Table 15.3. These data were later used to compare to the
test data in Figs. (d-f). The degradation parameter δu is the only parameter that
changes between the six figures.
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parameter at each level of UV radiation or concentration of MMC. The lines cor-
respond to hill functions fit to these data points with different exponents n=1,
2 and 3. The solid lines correspond to Parameter Set 1 and the dashed lines
correspond to Parameter Set 2.

for a hill coefficient of 1, the corresponding fit yields non-physical negative results:

{α1, α2, α3} = {0.533,−0.811,−26.8}.

With information on how the system changes with varying conditions, one can in

principle use this toggle switch to indirectly measure the UV or MMC levels (as

is the general objective of [54]).

The available data for this identification is severely limited in that it only
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gives the distribution of a single protein, v, whereas the model computes the

simultaneous joint distributions for both proteins u and v. It has been found that

two very different parameter sets can match the same data set for the distributions

of v, and therefore this identification is not unique (see Parameter Sets 1 and 2 in

Table 15.3). Even though the parameter sets are not unique, comparing parameter

sets to each other can reveal some interesting information. In particular, the

comparison reveals that the v production and degradation values (k21, k22, δv)

in parameter set 2 differ from those in set 1 by a fixed ratio (See Table 15.3).

Thus, this identification has at least revealed that the ration between these three

parameters as:

[k21 : k22 : δv] = [5.19 : 38.8 : 1].

At this point, however, it is not clear if any additional information is forthcoming,

and more information is needed to distinguish between these parameter sets. Close

examination finds that although parameter sets 1 and 2 predict the same distri-

bution for v, these parameters result in very different behavior for the distribution

of u as can be seen in Fig. 15.10. Therefore these parameters set produce distinct

results, and with more information, the unique identification of the parameters

may become achievable.

Identification with full Distribution

In the previous identification attempt, we tried to identify the parameters from

the distribution of a single protein at a single point in time. We found that there

are many possible parameter sets that will succeed in matching the distribution

of v but which have very different distributions for u. As a numerical experiment,

we have used parameters set 1 to generate the full joint distribution of u and v,

183



0 50 100 150
0

1

2

3

4

5
x 10

!3

0 50 100 150
0

1

2

3

4

5
x 10

!3

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y
 

Population of u Population of u Population of u

0 J/m2
UV

6 J/m2
UV 12 J/m2

UV

(a) (b) (c)

Figure 15.10: Toggle switch distributions for u for parameters sets 1 (red) and 2
(blue) from Table 15.3. Note that the distributions for u here are different while
the distributions for v in Fig. 15.8 were identical.

which we then use as the target distribution in the identification procedure.2

Using the full distribution at a time of 1000s allowed for a reasonably close iden-

tification of the ten parameters (see Parameter set 3 in Table 15.3), but the iden-

tification is still not unique. In this case, closer examination reveals that there is

much stronger correlation between the parameters. In particular, the values for all

of the production and degradation parameters (k12, k21, k22, δv, δu(0), δu(6), δu(12))

are all a constant factor of 1.19 removed from the correct parameters. Thus, we

have uniquely established the ratio between all of these parameters but not their

exact numbers. This suggests that the identification is very close, and may be

complete with a little additional information.

Closer examination of the model with Parameter Set 1 reveals that at least

some of the transient modes have died out on a time scale less than the chosen

1000s. This can be seen readily by comparing the distributions computed with

Parameter Sets 1 and 3 at different times. In Fig. 15.11 the marginal distribution

of u at different times as computed from Set 1 (solid blue line) and Set 3 (dashed

red line). For very short times of 1 or 10s (top two rows), these distributions

2The cost function for this and all remaining identification procedures has been set to a
simple un-weighted 1-norm difference between the estimated and target distributions.
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are distinguishable from one another. However, after a short transient time of

100s, the two distributions are indistinguishable (compare bottom three rows). In

essence, conducting the identification at 1000s is effectively the same as identifying

the system after it has already reached some lower dimensional manifold. As was

the case in Chapter 12 above, we discover that it is impossible to uniquely identify

all parameters from insufficiently rich dynamics. However, if instead we attempt

the identification at a shorter time step of 50s before these dynamics have fully

decayed, then the identification becomes possible, and we are able to uniquely

identify every parameter each within an error of 0.5% (See parameter set 4 in

Table 15.3).

Identification with a single protein at multiple time points

Chapter 12 showed that by taking data many time points, one can identify

transcription and translation parameters from protein data alone. Although it is

not possible to uniquely identify all ten parameters of model with the quasi-steady

state distribution of v, it may be possible to identify these parameters from the

distribution of v at multiple transient points in time. With data taken at five time

points, many of the parameters can indeed be identified as documented in Set 5

of Table 15.3. However, a few parameters remain unidentified. These include

the repressed production rates for u as well as the effects of u and v levels on

the production rate of v and u respectively. It is interesting to note that the

degradation rates of u are correctly identified. A possible reason for this is as

follows: In the absence of v, the production of u is very fast, and the level of

u quickly reaches a relatively high level. This is observed in Fig. 15.11 Once v

in which u reaches its highest levels on the order of 10s. The second protein v
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also reaches a moderate level on the same time scale and effectively shuts off the

production of u. By the time 20s has passed u can have relatively high levels,

but it is no longer being produced. As more time passes the degradation of u can

be observed in increasing levels of v production. In order to capture the rates of

u production, however, it is envisioned that a much shorter time scale may be

necessary.

In each of the above optimization procedures, very fine precision is required in

the solution of the distribution. In some cases moderate changes in the parameters

result in relatively small changes in the distribution. If these changes are on the

same order of the error in the master equation solution, then it is impossible to

judge whether one parameter set is better than another. This issue is particularly

critical in gradient based searches, where a small perturbation approach is used

to estimate the gradients. In the procedures above the FSP tolerance, ε, has

been set to 10−6. Additional numerical experiments with tolerances of 10−4 have

been considered, but were found to be far less reliable in the estimation. This

observation has two consequences: (i) it would be very difficult to conduct such

an estimation with Monte Karlo type solutions, such as the SSA, because these

would require on the order of 1012 runs per parameter set. (ii) Small amounts of

measurement error will have a strong adverse effect on the identifiability of any

given system. These two consequences may be somewhat ameliorated by taking

measurements at a much large number of time points and effectively averaging

out the measurement noise.
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Chapter 16

Case Study: The Pap Pili
Epigenetic Switch in E. Coli

Each year urinary tract infections result in about 8.3 million doctor visits

in United States alone1. Over 90% of the Escherichia Coli bacteria isolated from

these infections are covered with small hair-like structures known as Pyelonephritis-

Associated Pili, or Pap [75]. From the perspective of E. coli survival within a host

organism, pili expression is both beneficial and detrimental–Pili enable E. coli to

bind to host epithelial cells, establish colonies and feed off host organisms. With-

out the binding capabilities of pili, E. coli colonies would be more easily flushed

from the host (i.e. during urination). Conversely, pili production consumes a

significant portion of the cellular energy, thus weakening individual bacteria [46].

Further, pili to host attachment may irritate the host and trigger an immune

response. Thus, it is beneficial for any population descending from a single ances-

tor cell to have different pili expression phenotypes. This variation in expression

comes as a result of an epigenetic switch–two cells with the exact same DNA can

have vastly different expression: one expresses pili (phase ON) and one does not

1Ambulatory Care Visits to Physician Offices, Hospital Outpatient Departments, and Emer-
gency Departments: United States, 1999–2000. Vital and Health Statistics. Series 13, No.
157. Hyattsville, MD: National Center for Health Statistics, Centers for Disease Control and
Prevention, U.S. Dept. of Health and Human Services; September 2004.
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(phase OFF).

Previous experimental research conducted by David Low’s group at UCSB has

produced a vast amount of understanding regarding the Pap system switching

mechanism [9, 12, 74, 13, 73, 100, 49, 45, 46]. The key element of the system

is the pap gene (see Figs 16.1 and 16.4) which controls the transcription of the

PapBA sequence of messenger RNAs necessary for pili expression. There are

two areas to which regulators bind and alter the output of the PapBA promoter.

These are the proximal area (sites 1, 2 and 3) and the distal area (4, 5 and

6). The two most influential global regulators are: leucine-responsive regulatory

protein (Lrp), which binds to sites 1-6, and DNA adenine methylase (DAM), which

methylates the four GATC sequences found at the top and bottom strands at sites

2 and 5 [45]. In addition to the global regulators, the Pap-encoded local regulator

protein (PapI) is produced within and is specifically linked to the Pap network

[46]. Depending upon how the regulators alter the epigenetic structure of the

pap operon, the PapBA promoter may be active or inactive. The key-ingredients

for the active cell (see Figure 16.4a) is DAM methylation of the top and bottom

GATC sequences in site 2 and Lrp bound to distal sites 4, 5, and 6 [46]. PapI is

produced when the gene is in this active configuration and subsequently increases

the affinity of Lrp for the distal sites, and thus acts as a positive feedback regulator

[46].

Building upon this vast understanding of the pap system, at least three inde-

pendent computational research groups have been studying the effects of DAM

methylation, Lrp binding, growth rate, initial state dependence, and molecular

noise on the Pap switching behavior. Liao’s group in UCLA published two such

models [48, 111] in which the authors utilized the Monte Carlo based Stochastic
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Simulation Algorithm [35] to model the pap system dynamics. At UCSB, Shoe-

maker and Doyle considered a hybrid Boolean/stochastic model of the pap pili

switch to demonstrate that molecular noise may lead to disparities between cell

genotype and phenotype [89]. We recently proposed a third concurrent model

[66], to analyze the core regulatory region of the pap gene and its stochastic inter-

actions with the key regulatory components: Lrp, PapI and DAM. This model is

particularly exciting in that research on the Pap system has directly led to the de-

velopment of the FSP methods discussed above. This Chapter expands upon the

model in [66] to make specific predictions regarding the dependence of the pap

system upon the concentration of its various regulatory chemicals: Lrp, DAM,

PapB and PapI. First, the next section begins with a detailed description of the

Pap system. Then, Section 16.2 provides a detailed analysis of the Pap switch.

16.1 The Core Mechanics of the Pap Switch

The expression of pyelonephritis-associated pili (Pap) in E. Coli is stochastic

in nature in that two cells of identical ancestry and identical environment may

develop vastly different traits: ON (pilliated) or OFF (bald). This section dis-

cusses the most important mechanisms that control the Pap switch and provide

the assumptions upon which the current model is based.

The first subsection describes the important genetic features of the pap operon:

the genetic sequence which provides the basic structure through which Pap ex-

pression is activated and regulated. The following subsections then describe how

various regulators interact with the operon to effect Pap switching behavior. The

final subsections then describes the necessary genetic configurations for pap tran-

scription.
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(GATCdist methylated, GATCprox nonmethylated). Initial anal-
ysis indicated that methylation of GATCdist was required for
maintenance of the OFF transcription state because introduc-
tion of an A to C transversion within GATC results in a
phase-locked ON phenotype (Fig. 1) (10). Although the aden-
osine within GATC is obviously required for methylation of this
site by Dam, the affinities of Lrp for wild-type pap DNA and
DNA containing the GCTCdist mutation appear similar (10), and
dimethyl sulfate footprint analyses indicate that Lrp does not
closely contact the adenosine of GATC (8). Further studies (10)
showed that overproduction of Dam prevented the phase OFF
to ON transition in cells containing a wild-type pap sequence but
not in cells containing the GCTCdist mutation (Fig. 4). Thus,
overmethylation of GATCdist prevents the phase OFF to ON
transition, consistent with the hypothesis that methylation of this
distal GATC site helps maintain cells in the OFF state.

Another factor that may contribute to maintenance of the
phase OFF state is a mutual binding exclusion phenomenon. The
affinity of Lrp is about 2 times higher for sites 1–3 compared with
sites 4–6 when the sites are separated (Fig. 5A Lower). However,
when the sites are linked (intact pap regulatory region) the
affinity of Lrp for sites 4–6 is reduced 10-fold (Fig. 5A, compare
Upper and Lower). These results indicate that binding of Lrp at
sites 1–3 exerts a negative effect on Lrp binding at sites 4–6. This

mutual binding exclusion effect is reduced from 10-fold to only
about 2-fold when unsupercoiled DNAs are used (unpublished
data), showing a strong dependence on DNA topology. Because
Lrp is known to form higher oligomers under certain conditions
(19, 20) and bend DNA (21), one possible mechanism is that the
conformation of pap sites 4–6 might be altered as a result of a
binding of Lrp at sites 1–3 located 102 bp away (measured from
site 2 to site 5) (Fig. 1). Because the binding of Lrp to pap DNA
is highly cooperative (8), this could serve as a signal amplifica-
tion mechanism. As discussed below, when the affinity of Lrp for
sites 1–3 is reduced by mutation of Lrp binding site 3, mutual
exclusion works in reverse, lowering the affinity of Lrp at sites
1–3 as a result of binding of Lrp at sites 4–6 (Fig. 5B).

Activation of papBA transcription requires binding of Lrp at
sites 4–6 (8), and thus, binding of Lrp at sites 1–3 indirectly
inhibits transcription because of mutual exclusion of Lrp binding
at sites 4–6. In addition, Lrp binding at sites 1–3 appears to
directly block pap transcription in vivo (13). Although papBA
transcription is low in cells containing either lrp! (3 Miller units,
MU) or hns! (59 MU) mutations, cells lacking both Lrp and
H-NS display a basal transcription level (528 MU), which is about
one-eighth that of phase ON cells (4,200 MU) (13). This
transcription activity is similar to that observed for hns! cells in
which pap regulatory sequences upstream of the papBA pro-

Table 1. Trans-acting factors that regulate Pap phase variation

Genotype Description Switch rates (OFF to ON)*

Wild type 7 " 10!4 per cell per generation
lrp! Leucine-responsive regulatory protein Locked OFF
crp! Catabolite gene activator protein Locked OFF
dam! DNA adenine methylase Locked OFF
papI! Local regulatory protein Locked OFF
papB! Local regulatory protein Locked OFF
hns! Histone-like nucleoid structuring protein 2 " 10!4 per cell per generation

*Switch rates measured in M9 glycerol minimal medium. Data are from refs. 6, 7, 9–11, 13, and 22.

Fig. 1. Regulatory sequences of the E. coli pap operon. The pap regulatory between the divergently transcribed papBA and papI promoters is depicted. The
two GATC sites subject to methylation by Dam are GATCprox and GATCdist, which are located within Lrp binding sites 2 and 5, respectively. The Lrp sites are shown
as filled circles and the Lrp binding sites are shown as boxed regions on the expanded DNA sequence. The orientation of the Lrp sites [using a consensus sequence
5#-Gnn(n)TTTt-3#] is indicated with arrows above the sequence. The distance between sites 2 and 5 is 102 bp, and the distance between sites 1 and 6 is 32 bp,
measured between conserved base-pairs within the Lrp binding sites (Fig. 6). The CAP and PapB binding sites are shown as open and hatched boxes, respectively.
Substitution, deletion, and insertion mutations are shown below the wild-type sequence. Mutant switch phenotypes are indicated in parentheses.

Hernday et al. PNAS ! December 10, 2002 ! vol. 99 ! suppl. 4 ! 16471

Figure 16.1: Organization of the pap operon region between the divergently tran-
scribed papBA and papI promoters (from [45]). The two GATC sites subject to
methylation by DAM are GATCprox and GATCdist, are located within Lrp bind-
ing sites 2 and 5, respectively. The Lrp sites are shown as filled circles and as
boxed regions on the expanded DNA sequence. The orientation of the Lrp sites
(using a consensus sequence 5’-Gnn(n)TTTt-3’) is indicated with arrows above
the sequence. The distance between sites 2 and 5 is 102 bp and the distance
between sites 1 and 6 is 32 bp, measured between conserved base-pairs within the
Lrp binding sites. The PapB binding site is shown as a hatched box. A few mu-
tations are shown below the wild-type sequence; switch phenotypes are for these
indicated in parentheses.

16.1.1 The pap operon

The pap operon provides the basic structure of the switch and defines the

rules of all regulatory actions. The pap regulatory region encompasses the diver-

gently transcribed papI and papB genes together with the 416 bp intergenic region

(Fig. 16.1) [45]. In wild-type E. Coli, PapB is the first of many convergently tran-

scribed proteins that result in the eventual production of Pili. In addition to being

produced by the pap operon, both PapB and PapI are local regulatory proteins

[8, 100, 110, 42, 49, 46]; see below.

In the intergenic region between the papI and papB promoters, there are six
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pap DNA Lrp binding sites spaced three helical turns apart; each Lrp binding site

contains the sequence GxxxxTT [73]. These sites are designated by numbers 1 to

6 in Fig. 16.1, where 1-2-3 correspond to the sites proximal to the papB promoter,

and sites 4-5-6 are those distal to the papB promoter [73].

The regulatory region also contains four DNA sites with the genetic sequence

GATC. Two of these occur at the top and bottom strands at Lrp binding site

2, designated GATCprox. The other two occur at Lrp binding site 5, designated

GATCdist. DNA GATC sites are target sites for DNA adenine methylase (DAM),

which places a methyl group on the adenine of each GATC sequence [13].

The Pap switch is controlled by the three primary regulatory factors that

interact with the regulatory sites 1-6. These factors are Leucine-responsive Reg-

ulatory Protein (Lrp) [74, 12, 13, 73, 102, 101], DNA Adenine Mathylase (DAM)

[12, 74, 13, 101, 42, 46] and the local pap encoded regulatory protein PapI [74, 49].

The next subsections provide a brief description of these regulatory factors and

lists the related assumptions for the proposed model. For the readers’ convenience,

the major assumptions are listed in bullets below.

16.1.2 Leucine-Responsive regulatory Protein (Lrp)

Leucine-responsive regulatory protein is a global regulator that affects many

of the genetic processes of the cell including Pap. The number of Lrp molecules

found in the cell is on the order of 3000 copies [109], but most of these are bound

to other non-pap-specific regions of the DNA. Furthermore, the remaining Lrp

molecules aggregate into large groups, such that the number of free Lrp molecular

groups may be as few as 50 to 150 per cell [88]. The current model assumes that

each such group behaves as a single reactant Lrp molecule.
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Model Assumption 1: Based upon this data, the model assumes that the

number of free Lrp molecules is held constant at 100 per cell.

In vitro DNA footprint analyses indicate that Lrp binds with highest affinity

to Lrp sites 1-2-3, and with lower affinity to sites 4-5-6 [73, 74, 13]. Furthermore,

this binding is highly cooperative.

Model Assumption 2: Lrp binds simultaneously at all three proximal sites

(1-2-3) and/or at all three distal sites (4-5-6). Thus there are four possible Lrp

binding patterns as illustrated in Figure 16.2. These Lrp bindings are reversible

in that Lrp can bind and unbind from the DNA.

Mutational analyses show that disruption of Lrp binding sites 2 or 3 results

in increased papB activation. In contrast, disrupting Lrp sites 4 or 5 results in

decreased papB activity [73]. These results suggest that binding of Lrp proximal

to the papB promoter inhibits transcription whereas binding of Lrp at the distal

site activates transcription, and supports the following assumptions:

Model Assumption 3: RNAP binds at full strength to the pap operon when

Lrp is bound to distal sites 4-5-6. RNAP does not bind when Lrp is bound to

proximal sites 1-2-3. RNAP binds at one tenth its full strength when Lrp is bound

at neither 1-2-3 or 4-5-6.

Based upon the results reported in [74, 73, 13, 46], Table 16.1, top section,

provides the ratios of dissociation/association rates of Lrp for the proximal and

distal locations for two levels of PapI. For the distal Lrp binding region, the affini-

ties are given for the four possible methylation patterns: Hemi-0: no methylation,

Hemi-T: methylation of top strand only, Hemi-B: methylation of bottom strand

only, and Hemi-2: full methylation. For the proximal location, it is assumed that

all methylation patterns have the same Lrp binding affinities.
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Figure 16.2: Schematic of the Possible pap-Lrp binding configurations.

From unpublished results produced by Aaron Hernday in Low’s group, Table

16.1, second section, presents the half life’s for Lrp dissociation at the proximal

and distal locations for two different quantities of PapI. From these half-life data,

one may derive the dissociation rates of Lrp. Table 16.1, third section, presents

these derived dissociation rates.

In [45], Hernday et al showed that Lrp binding at the proximal sites 1-2-3

reduces the affinity of Lrp for the distal sites 4-5-6 by a factor of 10-fold. This

mutual exclusion effect acts in the reverse as well in that Lrp binding at 4-5-6

reduces the affinity of Lrp at 1-2-3. This supports the assumption:

Model Assumption 4: Lrp bound at sites 4-5-6 decreases the affinity at

1-2-3 by a factor of 10. Lrp bound at sites 1-2-3 decreases the affinity at 4-5-6 by

a factor of 10.

16.1.3 DNA Adenine Methylase (DAM)

DNA adenine methylase is another global regulator for E. coli. This regulator

occurs in low copy numbers on the order of about 130 molecules per cell [11].

DAM targets GATC sequences throughout the genome and places methyl groups
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1. LRP off/on Binding Ratios (kD = koff/kon Measured [46])
Locations Methylation PapI amount Value Units
dist hemi-0 0nM 2.2 nM
dist hemi-T 0nM 9.0 nM
dist hemi-B 0nM 15.5 nM
dist hemi-2 0nM 20.0 nM
dist hemi-0 Saturation 0.2 nM
dist hemi-T Saturation 2.0 nM
dist hemi-B Saturation 6.5 nM
dist hemi-2 Saturation 20.0 nM
prox all 0nM 1.2 nM
prox all Saturation 0.4 nM

2. LRP Dissociation Half Life’s (τ1/2Measured–Unpublished)
Locations Methylation PapI amount Value Units
prox all 0nM 3600 s
prox all Saturation 10200 s
dist all 0nM 90 s
dist all Saturation 1080 s

3. LRP Dissociation Rates (koff Derived)
Locations Methylation PapI amount Value Units
prox all 0nM 1.92× 10−4 N−1s−1

prox all Saturation 6.80× 10−5 N−1s−1

dist all 0nM 7.70× 10−3 N−1s−1

dist all Saturation 6.42× 10−4 N−1s−1

4. Lrp Prox/Dist Mutual Exclusion Effect: 10x (Measured [46])
5. PapI effect exponential constant (α Fitted)

Locations Methylation Value Units
dist all 5 N−1

prox all 80 N−1

Table 16.1: Reaction rate parameters for the Lrp association and dissociation
events.
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(CH3) upon the adenine element of these GATC sequences. For most GATC

sequences, it appears that DAM methylates processivly following DNA replication

[99]. By moving along the one dimensional DNA strand and methylating each

sequential site, this allows DAM to remethylate the GATC sites much faster and

with far fewer DAM molecules than would be required by a random distributed

methylation process. However, it has been shown that the specific GATC targets

at in the pap regulatory region (at sites 2 and 5) are methylated much slower than

other GATC sites, and in much more of distributive, point-wise manner [79]. The

related modeling assumption is:

Model Assumption 5: DAM applies methyl groups to the pap GATC se-

quences in a distributed stochastic process with an exponentially distributed hold-

ing time. DAM can individually methylate any of four pap GATC sequences: top-

dist, top-prox, bottom-dist, bottom-prox, and there are a total of 24 = 16 possible

methylation patterns as illustrated in Fig. 16.3.

Urig et al. observed that the remethylation of GATC following replication

occurs very quickly with a half life of about 4 seconds [99]. If one assumes that

this remethylation is distributed and that there are approximately 130 molecules

of DAM in the cell, then one can derive the DAM methylation rate as:

kmeth = −log(0.5)/(130 ∗ 4s) = 0.00133N−1s−1.

Of course, this rate corresponds to the half life for processive methylation. The

rate for the actual methylation of the GATC sites in the pap operon should be

much less. For the results presented in this study, the methylation rate is assumed

to be:

kmeth = 0.00025N−1s−1.
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Figure 16.3: Schematic of the 16 possible pap methylation configurations.

Examination of the pap DNA methylation patterns showed that in phase

OFF cells GATCprox is nonmethylated and GATCdist is methylated whereas the

converse pattern exists in phase ON cells (GATCdist nonmethylated, GATCprox

methylated) [13]. This information supports the following assumptions regarding

the disassociation rates of RNAP:

Model Assumption 6: RNAP disassociates at its basal rate only when

GATCprox is fully methylated and GATCdist is not fully methylated. RNAP

disassociates at its 400× its basal rate when neither GATCdist nor GATCprox are

fully methylated. RNAP disassociates at its 4002× its basal rate when GATCdist

is fully methylated.

The ability of DAM to methylate the GATC sequences depends upon Lrp

[12, 74, 101]. In particular, addition of Lrp to pap DNA in vitro blocks methylation

of the pap regulatory GATC sequences [101]. These data indicate that in phase

OFF cells, Lrp is bound at sites 1-2-3 and blocks methylation of GATCprox within

site 2. In contrast, Lrp bound to sites 4-5-6 in phase ON cells blocks methylation
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Figure 16.4: (a) Full OFF transcription configuration of the pap operon. GATCdist

is fully methylated (green circles at site 5), Lrp (grey ovals) is bound at proximal
sites (1-3), pap transcription is shut off. (b) Full ON transcription configuration of
the pap operon. GATCprox is fully methylated (green circles at site 2), Lrp (grey
ovals) is bound at distal sites (1-3), pap transcription is at full strength. PapI
binds to, and stabilizes the Lrp-DNA complex at site 5.

of GATCdist within site 5 (see Fig. 16.4). This information supports the following

model assumptions:

Model Assumption 7: Lrp bound at sites 4-5-6 blocks DAM methylation

at site 5. Lrp bound at sites 1-2-3 blocks DAM methylation at site 2.

There is no known mechanism through which once applied a methyl group

may be removed from a GATC site. Therefore, unlike Lrp binding events, DAM

methylation events are modeled as irreversible reactions. Combining the four

different Lrp binding configurations in Figure 16.2 and the sixteen methylation

patterns in Fig. 16.3, there are a total of 64 possible pap operon configurations as

shown in Figure 16.5. Only three of these 64 configurations satisfy the conditions

of assumptions 3 and 6 and lead to full pap transcription; these are circled in

Figure 16.5. The 64 operon configurations are linked by 192 different reactions:
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Figure 16.5: Schematic of the 64 Possible pap operon configurations, and the 192
reactions between the different configurations. The three configurations that allow
transcription of the pap operon are circled. The sixteen of the configurations in
the shaded region are locked OFF; they will not result in much pap transcription.

64 Lrp binding reactions, 64 Lrp unbinding reactions, and 64 DAM methylation

events. These reactions are illustrated by the arrows in Figure 16.5. Because DAM

methylation is irreversible, there are certain configurations, which will result in

very little pap transcription; these configurations are shaded in gray. Once the

operon reaches a “locked OFF” configuration, DNA replication is necessary before

the pap can again be transcribed at a sizable level.

16.1.4 The PapI and PapB local regulatory proteins

The Pap switch is also highly dependent upon the effects of local pap regulator

proteins, PapI and PapB. PapB and PapI are divergently transcribed, and are the

key feedback signals in the Pap system. The mechanisms by which PapB and

PapI affect the pap switch are well characterized as follows.

PapB is a 12 kDa regulatory protein that binds to DNA targets containing
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the sequence GACACAAAC [110] and plays an essential role in pap activation [8].

When the pap operon is in a production configuration (Lrp is bound to 4-5-6 but

not to 1-2-3 and DAM has fully methylated site 2, but not site 5) then the PapB

gene is transcribed. PapB, in turn, binds with high affinity near the papI promoter,

and is essential for the initiation of papI transcription [110]. The production of

PapB is subject to auto-regulation; at high levels of PapB, papB transcription is

inhibited [30]. This auto-regulation appears to be due to the presence of a low

affinity PapB binding site located overlapping the -10 hexamer RNA polymerase

binding site in the papB promoter, although this has not been directly shown.

PapI is a small 8 kDa regulatory protein that interacts with low affinity to

both Lrp [49] and specific DNA sequences within sites 2 and 5 [46]. When PapI

is present in the system, it has been experimentally observed that the dissocia-

tion rate of Lrp is significantly decreased (Krabbe and Low, unpublished data).

Possibly, this mechanism is achieved by PapI binding with high affinity to Lrp

in complex with pap sites 2 and 5 [49, 46], thereby creating a stable PapI-Lrp-

DNA complex at site 2 or 5. Without specific information regarding the exact

mechanism of PapI’s effect, it is reasonable to make the simplifying assumption:

Model Assumption 8: Lrp dissociation rate and Lrp binding affinities are

functions of the level of PapI present in the system. Table 16.1 lists these dissoci-

ation rates and affinities for two levels of PapI population: low and at saturation.

The quantitative effect of a specific level of PapI on Lrp affinity and dissociation

rates varies from site 2 to site 5 and also depends upon the methylation pattern

of the GATC sequences (Hemi-0, Hemi-T, Hemi-B or Hemi-2). In particular, low

levels of PapI have a much greater influence on the distal sites 4-5-6, especially

when GATCdist is not fully methylated [46]. See Table 16.1. Hernday et al. showed
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that the PapI effect on a methylated site 5 reaches saturation at a very low level

of about 5nM, while the effect of PapI on the proximal site 2 reaches saturation

at a much higher level (greater than 600nM–see Ref [46], Figures 4 and 6). PapI

appears to have no effect on the binding affinity at site 5, when the contained

GATC sequence is fully methylated. Based upon the PapI response given in [46],

the following assumption is made:

Model Assumption 9: The effect of PapI on the Lrp affinity is assumed to

vary as:

kD(PapI) = kDsat + (kD0 − kDsat) exp(−α[papI]),

where all kD’s are dependent upon the location (prox or dist) and the methylation

as shown in Table 16.1, section 1. The parameter α is fit to match the results in

[46] and is given in Table 16.1, section 5.

At present, there is a lack of quantitative information regarding the production,

degradation and interactions of the local regulatory proteins PapB and PapI.

Faced with this lack of information, it is natural to seek a simple consistent model,

which can build upon as more information become available. For this reason, the

two regulatory proteins are treated as one.

Model Assumption 10: Unless otherwise specified, PapI and PapB are

assumed to occur in equal populations: Pap := PapI = PapB. In effect the two

proteins are considered as a single generic Pap protein. This assumption will be

relaxed in the study of the individual PapI and PapB proteins.

Before the protein Pap can be produced it must first go through the compli-

cated process of transcription and translation. This process has been simplified to

two steps–first RNAP binds to and unbinds from the pap operon in a stochastic

event, and then Pap proteins are created in a stochastic event.
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Model Assumption 11: RNA polymerase (RNAP) attach to the operon

in a stochastic event, thereby initiating a production configuration. Production

capability is ended when RNAP detaches from the operon. The binding and

unbinding rates of RNAP depend upon the configuration of the pap operon as

described in Assumptions 3 and 6.

Model Assumption 12: It is assumed that the generic Pap gene is tran-

scribed and translated simultaneously and instantaneously during a single ex-

ponentially distributed stochastic event. Thus transcription and translation are

combined into a single reaction: DNA − RNAP → DNA − RNAP + Pap; the

rate of this reaction is assumed to be 4Ns−1.

Model Assumption 13: The generic Pap protein is assumed to degrade as a

non-linear stochastic event: PapI → ∅, with rate w = 10−4[Pap]+10−6[Pap][Pap−

1].

For the simplified model, the negative feedback auto-regulation mechanism of

PapB is included as follows:

Model Assumption 14: If RNAP is attached to the operon, it can be de-

tached in a stochastic event with rate proportional to the square of the population

of Pap. This simple mechanism auto-regulates the amount of Pap in the system.

16.1.5 Modeling of multiple generations

As discussed above, DAM methylation is an irreversible process. If left for very

long periods of time, every GATC sequence would eventually become methylated

(Methlylation pattern 16 in Figure 16.3). This combined with assumption 6 would

suggest that every cell would eventually turn OFF and remain OFF. This, of

course, is not the biological case. In a single generation, once the operon has
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reached one of the configurations in the shaded region of Figure 16.5, that cell

will not produce more Pap until the subsequent generation. Thus, in order to

model OFF to ON switching, it is necessary to consider multiple generations.

This section describes the current model’s treatment of multiple generations.

Model Assumption 15: Replication is modeled as a exponentially dis-

tributed stochastic event with fixed rate constant, csplit.

At time of replication, Lrp presumably dissociates from the DNA as a result

of the DNA polymerase III replication machinery, and the gene forks into two

hemi-methylated daughter strands [46]. Depending upon the methylation pattern

of the DNA at time of replication, the daughter strands will have different initial

configurations for the next generation. For example, methylation pattern 12 will

generate one daughter with methylation pattern 7 and one with pattern 3 (see Fig.

16.3). After replication DAM again begins its competition with Lrp to remethylate

the DNA. In order to track the evolution of a population arising from single cell,

one may make the following model assumption:

Model Assumption 16a: For tracking of populations, it is assumed that

in each replication event the mother cell simultaneously gives rise to two hemi-

methylated daughters. Table 16.2, section 1, provides the stoichiometry replica-

tion events under this assumption.

Using this assumption, one can simulate the evolution of a population begin-

ning from a single cell for many generations and obtain a very detailed description

of how one colony might develop over a handful of generations. Although the in-

formation obtained through this method is very easily interpreted and closely

resembles patterns observed under the microscope, the actual method requires

tracking of an exponentially increasing number of cells. For more general results
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and faster predictions, the proportion of cells in each state can be found more

easily by utilizing the following assumption and tracking only a single cell at a

time:

Model Assumption 16b: For tracking of a single cell, it is assumed that

in each replication event the mother cell gives rise to one of two possible hemi-

methylated daughters; each daughter has equal probability. Table 16.2, section 2,

provides the stoichiometry replication events under this assumption.

In addition to the splitting of the pap DNA, the replication event also results

in a redistribution of the generic Pap protein-some goes to each daughter cell.

This distribution can be modeled in many different manners, but the following

assumption has been made.

Model Assumption 17: Each daughter cell has half the amount of Pap

protein as did the mother.

With these assumptions, the pap model can be constructed and is thoroughly

analyzed in the following section.

16.2 Analysis of the Pap Switch

Under the assumptions in the previous section there are 128 configurations in

which the pap operon may be found (4 Lrp binding patterns × 16 methylation

patterns × 2 RNAP binding patterns). Furthermore, the population of the generic

Pap protein can be any non-negative integer number such that there are an infinite

number of possible states in which the system may be found. The number of

reactions channels linking one configuration to another is also quite high. There

are 64 Lrp binding events, 64 Lrp unbinding events, 64 methylation events, 64

RNAP binding events, 64 RNAP unbinding events, 64 Pap transcription events,
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1. Replication stoichimetries under assumption 16a
Mother Meth. Daughter Meth. Stoichiometry
M1 {M1, M1} {M1 → M1 + M1}
M2 {M2, M1} {M2 → M2 + M1}
M3 {M1, M3} {M3 → M1 + M3}
M4 {M1, M4} {M4 → M1 + M4}
M5 {M5, M1} {M5 → M5 + M1}
M6 {M2, M3} {M6 → M2 + M3}
M7 {M7, M1} {M7 → M7 + M1}
M8 {M2, M4} {M8 → M2 + M4}
M9 {M1, M9} {M9 → M1 + M9}
M10 {M3, M5} {M10 → M3 + M5}
M11 {M5, M4} {M11 → M5 + M4}
M12 {M7, M3} {M12 → M7 + M3}
M13 {M2, M9} {M13 → M2 + M9}
M14 {M5, M9} {M14 → M5 + M9}
M15 {M7, M4} {M15 → M7 + M4}
M16 {M7, M9} {M16 → M7 + M9}

2. Replication stoichimetries under assumption 16b
Mother Meth. Daughter Meth. Stoichiometry
M1 {M1, M1} {M1 → M1, M1 → M1}
M2 {M2, M1} {M2 → M2, M2 → M1}
M3 {M1, M3} {M3 → M1, M3 → M3}
M4 {M1, M4} {M4 → M1, M4 → M4}
M5 {M5, M1} {M5 → M5, M5 → M1}
M6 {M2, M3} {M6 → M2, M6 → M3}
M7 {M7, M1} {M7 → M7, M7 → M1}
M8 {M2, M4} {M8 → M2, M8 → M4}
M9 {M1, M9} {M9 → M1, M9 → M9}
M10 {M3, M5} {M10 → M3, M10 → M5}
M11 {M5, M4} {M11 → M5, M11 → M4}
M12 {M7, M3} {M12 → M7, M12 → M3}
M13 {M2, M9} {M13 → M2, M13 → M9}
M14 {M5, M9} {M14 → M5, M14 → M9}
M15 {M7, M4} {M15 → M7, M15 → M4}
M16 {M7, M9} {M16 → M7, M16 → M9}

Table 16.2: Pap replication stoichiometries for various assumptions.
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and one Pap degradation event. In all this totals over 350 different reaction types,

each with their own distinct stoichiometries and state dependent reaction rates.

With the inclusion of multiple generations, this number is much larger. About

half of these reactions and configurations are illustrated in Fig.

16.5, which does not include RNAP or replication events.

The following sections use the FSP tools described above in order to analyze

the effects that various of the chemical players have on the Pap switch.

16.2.1 Wild-type Pap analysis

This section begins with an analysis of the wild-type Pap behavior in terms of

both single generations as well as over multiple generations. The single generation

analyses consider three different initial configurations for the cell. For each initial

cell, Fig.

16.6 shows the probability distribution for the population of Pap protein at the

end of thirty minutes (a typical generation length). From the figure, one can

observe that this distribution has a bimodal form. Low Pap expression levels (left

peak) correspond to OFF cells and high expression levels (right peak) correspond

to ON cells. For convenience, let any cell with more than ten Pap molecules be

considered ON and all others be considered OFF.

The prototypical OFF cell has methylation pattern 6 (see Fig.

16.3) and contains no Pap protein. Immediately after replication, this mother cell

gives rise to two daughter cells: one Hemi-T and the other Hemi-B, which cor-

respond to methylation patterns 2 and 3 in Fig. 16.3, respectively. Because Lrp

binding affinity has a non-symmetric dependence on the top or bottom methy-

lation of the GATCdist site (See Table 16.1 and [46]), these two daughter cells
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Figure 16.6: Probability distribution of Pap molecules in wild-type E. coli at the
completion of a single cell cycle beginning at various initial gene configurations.
The red and blue curves correspond to initial conditions with no Pap molecules and
methylation patterns 2 and 3, respectively. The green and black curves correspond
to initial pattern 4 with 0 or 30 molecules of Pap, respectively.

exhibit different behavior from one another (compare red and blue curves in Fig.

16.6).

A prototypical ON cell has methylation pattern 11 in Fig. 16.3 and a signifi-

cant amount of Pap. Upon replication, this cell gives rise to two hemi-methylated

daughter cells of methylation patterns 4 and 5. With the absence of experimen-

tally measured affinities of Lrp binding to the proximal sites (1-2-3), we have

assumed that these affinities do not depend upon the methylation pattern, and

the mode shows no difference between the top and bottom methylated GATCprox

initial configurations. In Fig. 16.6, the green curve represents the probability

distribution of Pap molecules after one generation for cells beginning with methy-

lation pattern 4 or 5 and with no Pap present in the system. From the figure it

is clear that methylation at the proximal site (green line) results in far more Pap

that methylation at the distal site (red and blue curves. One can also consider

the initial condition where the cell begins at methylation pattern 4 or 5 and where
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Figure 16.7: Probability distribution of Pap molecules in wild-type E. coli at the
completion of ten hours or approximately twenty generations.

the cell begins with thirty molecules of Pap from the previous generation (black

line in Fig. 16.6). In this case, the positive feedbacks mechanism of Pap make it

far more likely to have significant Pap than in any of the previous cases.

After ten hours spanning multiple generations, the model predicts that the

distribution of Pap molecules reaches the stationary distribution shown in Fig.

16.7. In addition to looking at the population of Pap molecules, it is of interest

to examine the methylation and Lrp binding patterns as shown in Fig. 16.8 and

16.9. In the subsequent sections, we will see how these patterns are effected by

the populations of various chemical players in the Pap switch.

16.2.2 Effect of DNA Adenine Methylase

DNA Adenine Methylase has a number of competing effects on the Pap system.

Methyation of the GATCprox sites helps protect the pap operon from Lrp binding

near the Pap promoter. Without this methylation, the cell will not produce

significant quantities of Pap. Conversely, methylation of the GATCdist sites blocks

the Lrp binding in that location that is required fro Pap transcription.
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at the completion of ten hours or approximately twenty generations. The methy-
lation patterns are grouped into three categories: (blue) Methylation patterns
6, 12, 13, and 16 are fully methyated at GATCdist–these are Over Methylated.
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Figure 16.9: Probability distribution of Lrp binding patterns in wild-type E. coli
at the completion of ten hours or approximately twenty generations. Pattern 1–
no Lrp is bound. Pattern 2–Lrp bound to Distal only. Pattern 3–Lrp bound to
proximal only. Pattern 4–Lrp bound at both distal and proximal.
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Figure 16.10: (a) Mean number of Pap molecules versus the population of DAM
at the completion of a single cell cycle. (b) Probability of turning ON (expressing
more than ten molecules of Pap) in a single generation versus the number of
DAM molecules in the system. For both of these plots, the initial condition was
methylation pattern 2, with no bound Lrp an no Pap. Solid lines correspond to
a the Pap levels after a single generation beginning with a cell in methylation
pattern 2, and dashed lines correspond to a population after ten hours.

In order to explore how the model captures this tradeoff, the model simulates

the switching response for a large number of different DAM populations. Fig.

16.10a plots the average number of Pap molecules per cell versus the population

of DAM, and Fig. 16.10b plots the probability of an ON cell versus the population

of DAM, where an ON cell is defined as as a cell that contains more than ten

molecules of Pap. From either figure, one can see that the model predicts that

DAM is required to initiate Pap transcription (there is no Pap at low DAM levels),

and that DAM shuts down Pap transcription at high levels.

To further examine the effect of DAM on the Pap switch, one should examine

how different levels of DAM effect the methylation and Lrp binding patterns.

In terms of Pap expression, the sixteen methylation patterns can be categorized

into three important groups: (i) Methylation patterns 6, 12, 13, and 16 are fully

methyated at GATCdist–these are Over Methylated. (ii) Methylation patterns 1,

2, 3, 4, 5, 7, 8, 9 and 10 are not fully methyated at GATCprox–these are Under
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Figure 16.11: Effect of DAM population on pap Methylation Patterns. Solid lines
correspond to a the Pap levels after a single generation beginning with a cell
in methylation pattern 2, and dashed lines correspond to a population after ten
hours.

Methylated. Finally, (iii) the remaining methylation patterns 11, 14, and 15 are

the fully Productive patterns. Fig. 16.11 shows how the probabilities of these

three categories change as the level of DAM increases. At low levels of DAM the

majority of the cells are under-methylated. At high levels, the majority are over-

methylated. Only at the moderate DAM population levels are there a significant

number of cells expressing one of the productive methylation patterns.
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Figure 16.12: Effect of DAM population on pap Lrp Binding Patterns. (cyan)
The under-bound phase where Lrp is not bound to any site. (red) The production
phase where Lrp is bound to the distal site. (blue) The over-bound phases where
Lrp is bound to the proximal sites. Solid lines correspond to a the Pap levels after
a single generation beginning with a cell in methylation pattern 2, and dashed
lines correspond to a population after ten hours.
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16.2.3 Comparison with experimental results

In order to validate the model, Fig. 16.10 also provides experimental obser-

vations from a similar DAM titration study performed in David Low’s group at

UCSB.2 In this study, the gene coding for DAM was placed under the control of

an externally applied inducer isopropyl β-D-1-thiogalactopyranoside (IPTG). In

the experiment, it was not possible to directly control or measure the populations

of DAM, but the populations of DAM was reasonably expected to vary simi-

larly to the applied concentration of IPTG. By inserting green florescent protein

(GFP)just down stream of the gene for PapB the experimentalists were able to

approximately measure the average levels of Pap protein in a cellular population.

In Fig. 16.10 the top axes correspond to the levels of IPTG in the system, and

the right axes to the measured level of Pap.

Although a direct comparison between the model predictions and the experi-

mental observation is not possible, their qualitative behavior is very similar and

suggests that the current model does indeed capture the effect of Dam on the

systems operation.

16.2.4 Effect of Leucine Responsive regulatory Protein

Like DAM, Lrp can also have a diverse range of effects on the Pap system. If

Lrp binds in the proximal location, it will block Pap transcription. If it fails to

bind at the distal location, transcription will not be fully activated. Fig. 16.14

shows the predicted effect of changing Lrp population levels for a wild-type level

of DAM (130 molecules). To further illustrate the tradeoff between DAM and Lrp,

Fig. 16.15 shows the contour plots of the average Pap population as a function of

2Unpublished data.
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Figure 16.13: Model predictions and experimental measurements of Pap pili OFF
to ON switching behavior in response to varying levels of DAM expression for
wild-type pap. (blue) Predicted OFF to ON switch rate (left axis) for different
levels of DAM population (bottom axis). (red) Experimentally measured Pap
transcript levels (right axis) under different DAM expression levels (top axis).
The absolute DAM levels have not yet been determined, but are expected to be
linearly related to IPTG concentration over the concentration range shown. These
data were obtained with E. coli pap-lac containing dam under control of plac [106].
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Figure 16.14: (a) Mean number of Pap molecules versus the population of Lrp at
the completion of a single cell cycle. (b) Probability of turning ON (expressing
more than ten molecules of Pap) in a single generation versus the number of
Lrp molecules in the system. For both of these plots, the initial condition was
methylation pattern 2, with no bound Lrp an no Pap. Solid lines correspond to
a the Pap levels after a single generation beginning with a cell in methylation
pattern 2, and dashed lines correspond to a population after ten hours.

both DAM and Lrp. From the figure, it is obvious that as DAM increases, more

Lrp is needed to successfully compete and induce maximal Pap production.

Because Lrp competes with DAM, it also has a large effect on the methylation

patterns and Lrp binding patterns of the pap operon, as is shown in Figures 16.16

and 16.17. At low levels of Lrp, the distal site will remain free from Lrp and

Pap transcription will not be fully initiated. At high levels, Lrp will overcome

its mutual exclusion and both sites will be bound with Lrp, thus shutting off

Pap transcription. Lrp also has an indirect effect through its influence on the

methylation of the pap operon. At low Lrp levels, DAM has the edge in the

competition and more of the cells will reach the over-methylated stage, and fewer

will be able to produce Pap. Conversely, at high levels, lrp will block DAM from

accessing the operon, and few cells will reach one of the productive methylation

patterns.
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Figure 16.15: Contour plot showing the levels of Pap proteins versus levels of DAM
and Lrp populations after multiple generations. The white squares correspond to
the level of DAM that produces the most Pap for each level of Lrp. The black
circles correspond to the level of Lrp that produces the most Pap for each level
of DAM. (top) With the PapI feedback mechanism. (bottom) Without the PapI
feedback mechanism.
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Figure 16.16: Effect of Lrp population on pap Methylation Patterns. Solid lines
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Figure 16.17: Effect of Lrp population on pap Lrp Binding Patterns. (cyan) The
under-bound phase where Lrp is not bound to any site. (red) The production phase
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single generation beginning with a cell in methylation pattern 2, and dashed lines
correspond to a population after ten hours.
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16.2.5 Effect of PapI

In this model, the feedback effect of PapI results in an increase in the Lrp

binding affinity to the proximal and distal sites. At low levels of PapI, this effect

is far stronger at the distal sites than at the proximal sites. The result is that Lrp

is more likely to bind at the distal site and the system will remain in a production

pattern for a longer portion of the cell’s lifetime.

In order to test the importance of this feedback mechanism in this model, the

model has also been used to predict the Pap levels in which the PapI feedback

mechanism has been turned off–that is the Lrp binding rates remain at the same

levels as when there is no Pap in the system (PapI minus mutant. Fig. 16.18

shows the ON portion of a population after ten hours versus DAM and Lrp with

and without the PapI feedback mechanism, and Fig. 16.15(bottom) shows the

contour levels of the expression versus DAM and Lrp. The model has also been

used to analyze the system in which the Lrp binding rates are set at the values

corresponding to 5nM of PapI independent of the actual Pap levels (PapI plus

mutant). From the plots, one can see that the current model indeed captures

the fact that PapI helps the system to retain the ON state (compare dotted,

dashed and solid lines in Fig. 16.18 and the top and bottom plots of Fig. 16.15).

Specifically the PapI plus mutant (dotted line) is ON far more often than the wild

type E. coli and the PapI minus mutant (dashed line) is OFF more than the wild

type. However, experimental results show that cells without PapI remain in a

locked OFF state, and the current model does not appear to capture the full scale

of PapI importance.
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Figure 16.18: Effect of PapI Feedback on the Pap Switch. Red dashed lines–With
wild-type PapI enhanced Lrp binding. Solid blue lines–Without no PapI enhanced
Lrp binding. Black dotted lines–With PapI feedback and elevated Pap levels. (a)
ON rate versus population of DAM. (b) ON rate versus population of Lrp.

16.2.6 Effect of various pap mutations

The above model has also been used to predict the behavior of four experimen-

tally constructed mutants that have been considered in earlier studies by Lows

group [13, 73, 45]. All simulations begin with a single cell in which there is no

previous methylation of GATC sites 2 or 5 (methylation pattern number 1 in Fig.

16.3), there is no Lrp bound to either the proximal or distal sites, and the ini-

tial population of PapI is set to zero. The simulations were aimed at predicting

the pap switching behavior over multiple generations as functions of the specific

mutations and the concentrations of DAM and Lrp.

In mutants 1 and 2, the adenine in the GATC as site 2 or 5 are replaced

with cytosine, respectively. This blocks DAM methylation at the proximal or

distal locations, respectively. In mutant 1, the inability of DAM to methylate

the proximal site allows Lrp to bind more readily, and blocks Pap transcription

(see blue line in Fig. 16.19). In mutant 2, DAM cannot methylate the distal

site, which encourages Lrp to bind there and initiate transcription (see black line
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Figure 16.19: Effect of various mutations on the Pap Switch. Red dashed lines–
Wild-type Pap. Blue–Proximal site 2 cannot be methylated. Black–Distal site
5 cannot be methylated. Cyan–Lrp has 1/4 wild-type affinity at proximal sites
1-2-3. Magenta–Lrp has 1/4 wild-type affinity at distal sites. (a) ON rate versus
population of DAM. (b) ON rate versus population of Lrp.

in Fig. 16.19). In this mutation, more DAM in the system always increases Pap

transcription. Mutations 3 and 4 decrease Lrp binding affinities proximal or distal

locations, respectively. In mutant 3 the decreased affinity to the distal site causes

more of the Lrp to bind at the proximal site and shuts down Pap transcription (see

magenta line in Fig. 16.19). Conversely, in mutant 2 the decreased affinity for the

proximal site helps to initiate transcription (see cyan line in Fig. 16.19). For all

four mutants, the numerical predictions match experimental observations from [73,

13, 45]. For ease of comparison, Table 16.3 summarizes the experimental results

for these mutations. In all cases the predicted behavior matches the qualitative

behavior of the observed experiments.
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Gene Alteration Low DAM Wild type High DAM
Wild-type OFF switching OFF
GCTCprox OFF OFF OFF
GCTCdist OFF ON very ON
1/4Lrpprox ON ON ON
1/4Lrpdist OFF OFF OFF

Table 16.3: Experimentally observed Pap switching behavior for wild-type E. coli
and four constructed mutations.
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Chapter 17

Conclusions and Future Work

Many important biochemical processes, especially those involving gene regula-

tory networks, occur on a very small scale, where mass action kinetics are not valid

and the system is dominated by fluctuations. As the size of the system shrinks

to the point where only a few copies exist of certain important chemical species,

these species must be described not by concentrations but by integer populations

numbers. In this regime continuous variable deterministic models are unrealistic,

and discrete stochastic models are necessary. Here the system can no longer be

usefully described by a single trajectory of the system through the state space;

that trajectory may be only one of many wildly different possibilities. Instead,

the system must be described by probabilities that the system will have certain

traits at certain times. For discrete population chemically reacting systems, the

evolution of this probability distribution is well understood to evolve according to

a system of equations known variously as the chemical master equation (CME),

master equation, or forward Kolmogorov equation.

This dissertation focuses on the Finite State Projection (FSP) method, the

FSP algorithm for the approximate solution of the CME, and various reductions

to improve the efficiency of the FSP approach. Unlike previous Monte Carlo
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analyses, the FSP directly computes the system’s probability density vector at

a given time and does not require the computation of large numbers of process

realizations. In the case of any Markov process containing only a finite number of

states, the FSP method provides an exact analytical solution. When the number

of possible states is infinite or extremely large, the approximate solution on the

projected space guarantees upper and lower bounds on the solution of the true

system. The FSP algorithm provides a systematic means of increasing the size

of the finite state projection until these bounds are within any pre-specified error

tolerance.

Although the original finite state projection method can significantly reduce

the order of the chemical master equation for many problems, this initial reduction

is not sufficient for all systems. Fortunately, the FSP approach is amenable to nu-

merous modifications, which can considerably improve upon the method’s range

and potency. This dissertation considers many of these modifications. Chapters 6

and 11.2.1 present two methods which allow one to obtain a minimal realization

for relevant portions of the master equation. The first and simplest method simply

determines the configurations that are both observable from the output as well

as controllable from the initial condition and removes the remaining extraneous

states. The second approach in Chapter 11.2.1 uses balanced truncation to reduce

the system. Chapter 7 develops the Slow Manifold FSP approach, which relies

upon projecting the dynamics of the full FSP onto its lower dimensional slow

manifold. Chapters 8 and 9 present the Multiple Time Interval FSP algorithm,

which is essentially an incremental approach to solving the original FSP using

different projections at different periods of time. Chapter 10 presents an interpo-

lation based FSP approach, in which one chooses a small subset of configuration
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points and assumes (i) that the probability distribution varies linearly between

these points and (ii) that the resulting model has linear dynamics. All of the

reduction approaches presented here can easily be used in conjunction with one

another such that the greatest reductions can often be achieved by sequentially

applying two or more methods.

While the practical limits of the finite projection based approach are yet un-

known, future implementations will greatly expand the class of problems for which

the FSP is an efficient and versatile tool for stochastic analysis. A few of the

planned improvements for the FSP include the following: (1) Variable time step

FSP implementations similar to that in Chapter 9 could allow for the use of long

time steps in the state space regions where the distribution spreads slowly, and

short time steps in the regions where the distribution spreads more quickly. (2)

One could use higher order shape functions or wavelets for the interpolation re-

duced FSP approach. These shape functions could be allowed to adapt over time

as the distribution evolves. (3) Many of the current model reduction approaches

utilize algorithms originally developed for densely connected systems. The ultra-

sparsity of the master equation could be more fully exploited. (4) Many of the

FSP implementation and reductions could in principle be modified to be run on

multiple processors. This is particularly evident in the case of the multiple time

interval FSP and the computation of the generator in the slow manifold FSP

method.

Even with the improvements outlined above, the FSP approach will likely never

fully replace all other available stochastic methods such as stochastic simulation

algorithms, stochastic differential equations or moment closure approaches. Each

of these has its own particular advantages and disadvantages. The FSP method
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is very fast and precise for systems in which the number of possible configura-

tions is small (or if the important dynamics of the master equation are sufficiently

low in dimension). However, for large systems with many interacting chemical

species, the FSP approach suffers greatly from the curse of dimensionality and

cannot be applied. Furthermore, although the majority of the approaches ex-

plored here can be fully automated, the actual coding is more complicated than

that of the stochastic simulation algorithm. For widespread accessibility beyond

the engineering community, a user-friendly FSP software package remains to be

developed. Conversely, stochastic simulations and SDEs are typically far easier for

the lay-person to implement and require only the simplest computational tools.

Furthermore, such Monte Carlo approaches can be applied to far more complex

problems. For many systems, trajectories may take hours, days, or longer to gen-

erate, but if researchers seek only to explore overriding qualitative trends, a few

realizations may suffice. However, Monte Carlo approaches have very poor con-

vergence for the solution of the master equation, and are therefore very inefficient

in the analysis of rare events. Systems with relatively simple distribution shapes

can be adequately captured with a few low order moments evolving according

to low dimensional nonlinear systems, that can be far faster to solve than the

much higher dimensional linear ODEs of the FSP. However, more complicated,

especially multi-modal, distributions will be very poorly captured with such low

order approximations. It is envisioned that all of the FSP reductions, moment

closure techniques, and Monte Carlo algorithms can be linked together into for

their mutual benefit. Where one method fails, some combination of others may

succeed. This hybridization of methods is a large open area for ongoing research.

In cases where the FSP approach succeeds, it can provide a wealth of informa-
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tion about a stochastic model. In the original FSP, the projection is done in such

a way as to obtain an accuracy guarantee on the solution of the full master equa-

tion. This error can be made very small and can enable the comparison of slightly

different systems. In turn this precision enables sensitivity analysis and system

identification as is discussed in Chapter 12. In a different direction of analysis, one

can change how this projection is made to gather different types of information.

For example, Chapter 11 demonstrates how this term may be used to (i) directly

determine the statistical distributions for stochastic switch rates, escape times,

trajectory periods, and trajectory bifurcations, and (ii) evaluate how likely it is

that a system will express certain behaviors during certain intervals of time.

The FSP methods were effectively demonstrated on many real biological exam-

ples: a toy model of the heat shock mechanism in E. coli, a genetic toggle model,

and a detailed model of the pap-Pili epigenetic switch in E. coli. In each case, the

FSP method generates the probability density vector to describe the process at

specific points in time. Chapters 13 through 15 have compared the accuracy and

efficiency of the FSP and popular Monte Carlo methods such as the SSA, τ leaping

algorithms and SSA approaches with time scale separation based reductions. In

many of these examples, the FSP algorithm outperforms Monte Carlo methods,

especially when computing the probability of unlikely events, such as pap OFF

to ON switching. These examples suggest that the finite state projection and its

various reduction schemes provide a very promising toolbox–especially in the field

of system’s biology, where very small chemical populations are common and in

which unlikely events may be of critical importance.
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