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The effects of solvent on molecular processes such as excited state relaxation and photochemical
reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated
using excited state molecular dynamics. In this work, we describe methods of simulating nonequi-
librium solvent effects in excited state molecular dynamics using linear-response time-dependent
density functional theory and apparent surface charge methods. These developments include a
propagation method for solvent degrees of freedom and analytical energy gradients for the calculation
of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the
solute-solvent system is out of equilibrium due to photoexcitation and emission. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4946009]

I. INTRODUCTION

Determining the effects of solvent on the electronic
and/or vibrational dynamics of chemical species has been
a challenge for many years.1–7 Important developments
regarding nonequilibrium dynamics for excited electronic
states have been made in recent years.8–15 The most popular
method of simulating large molecular systems is currently
the density functional theory (DFT).16 The standard for
molecular systems, Kohn-Sham DFT, is most often applied
to the ground electronic state. Excited electronic states of
molecular systems can be efficiently simulated using the
related linear-response time-dependent density functional
theory (LR-TD-DFT).17 Both DFT and LR-TD-DFT can
be used to perform Born-Oppenheimer molecular dynamics
(BOMD).18–21 Although relatively efficient in comparison
to other ab initio methods, using DFT or TD-DFT to
simulate the combined solvent and solute system (wherein
both solvent and solute are treated at the same level of
theory) is often intractable because the number of solvent
degrees of freedom often surpasses the limits of tractable
system size. Thus, approximations of solvent effects are
necessary.

The interaction between the solute and solvent can involve
charge transfer, dispersion, polarization, and Coulombic
interactions.22 In most cases, charge transfer and dispersion
can be neglected, while notable exceptions to this approxi-
mation include hydrogen bonding and ionic solvents.22 For
most polar solvents where only polarization and Coulombic
interactions are important, a dielectric continuum model for
the solvent is often used. The dielectric continuum model
has the added advantage of being an effective average over
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solvent configurations. This averaging is reflective of most
experimental measurements and would otherwise need to
be performed explicitly by simulating multiple molecular
configurations.23

When a fast process occurs in a solute, such as electronic
excitation, a polar solvent will usually not reach an equilibrium
with the solute on the same fast time scale. The solute-solvent
system is thus put into a nonequilibrium state.2,3,24,25 The
nonequilibrium response of the solvent to the electrostatic
effects of the solute can be described by the solvent’s
complex dielectric permittivity.8 Sometimes the complex
permittivity is approximated using a combination of fast
and slow time scale limits, where optical and static dielectric
constants describe the magnitude of the solvent response to
oscillating electric fields of infinite and zero frequency.26–29

This type of approximation is only suitable for step changes
in the solute charge density and inappropriate for dynamics
simulations where memory effects in the dynamic responses
are present and can be important. In dynamics simulations
the evolution of both solute and solvent subsystems occurs
on a range of time scales. At finite temperature, the
molecular motion of the solute causes dynamic solvation
effects to persist when the solvent relaxation rate is
slower than some time scale of molecular motion of the
solute.

Many experimental measurements of molecular systems
are performed in solution.5 It is no surprise that nonequilibrium
solvent effects are well known in the literature. For example,
intramolecular charge-transfer rates have been well correlated
with the longitudinal solvent relaxation rate τ−1

L .30 In
experiment, the nonequilibrium effects are often referred to as
dielectric friction and discussed in terms of dipolar orientation
relaxation of the solvent molecules. This has strong effects on
charge redistribution processes, such as those which happen
in many chemical reactions. Examples of measurements of
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the effect of polar solvents on the dynamics of chemical
systems include photoisomerization and dynamic Stokes shift
in solution.4,5

The methods developed here follow some previous
studies. The exploration of nonequilibrium solvent effects
in ab initio simulations was initiated by Bagchi, Oxtoby,
and Fleming by introducing the dynamic solvation effects
on a dipolar molecule in a cavity according to a linear
response function.24 Following this, dynamic solvation effects
were included in calculations of excited electronic states of
frozen nuclei (frozen such that there was no motion of the
nuclei) within an Onsager formalism by Hsu, Song, and
Marcus.7 Ingrosso, Mennucci, and Tomasi extended these
methods to a more realistic model of the solute cavity
with the integral equation formalism of the polarizable
continuum model in LR-TD-DFT.31 Following this, Caricato
et al. presented a multistep integration procedure for the
same model, again with frozen nuclei.8 Most recently, Ding,
Lingerfelt, Mennucci, and Li extended these methods to real-
time time-dependent density functional theory (RT-TD-DFT)
simulations of electronic dynamics with the conductor-
like polarizable continuum model CPCM15 while Corni,
Pipolo, and Cammi formulated time-dependent solvent effects
for several versions of the polarizable continuum model
(PCM) including CPCM and applied them to RT-TD-DFT.37

The study presented here adds to these previous studies
by formulating energy gradients and forces for the
nonequilibrium solvent effect. The nonequilibrium solvent
effects are formulated for propagation in excited state BOMD
simulations.

In a recent study,12 the authors of this paper described
excited state BOMD using a continuum solvent model under
the assumption that the solvent and solute remained in
equilibrium at all times. The purpose of the current study
is to lift both the approximation of frozen nuclei and of
equilibrium between solute and solvent, i.e., to simulate the
molecular dynamics of the solute with dynamic solvation
effects. These simulation methods are applied to BOMD in
either ground or excited electronic states of the solute using
molecular forces determined from DFT and LR-TD-DFT.
The method described here can be considered state specific
because the simulated solvent is polarized by the solute
charge density in the specific electronic state in which
the solute dynamics are propagated.29 Until the methods
described here were developed, a state specific solvent model
in molecular dynamics was not computationally feasible due
to the fact that analytical energy gradients in LR-TD-DFT
were not possible without separating ground and excited state
polarization effects.14

This paper is outlined as follows. In Sec. II we discuss
the inclusion of nonequilibrium solvent effects for ab initio
simulations and apply them to molecular dynamics. In Sec. III
the calculation of molecular forces in a nonequilibrium solvent
for DFT and LR-TD-DFT is described. Sec. IV gives the
specific computational methods used to demonstrate the
dynamics simulations. In Sec. V, model results are shown
describing the nonequilibrium solvent effects on molecular
dynamics after photoexcitation or emission. The paper is
concluded in Sec. VI.

II. NONEQUILIBRIUM SOLVATION MODEL

As in the other studies mentioned above, we begin by
writing the energy of interaction of a molecular charge density
with a solvent at time t,

Usolv(t) =
 rc

0
drR(r, t)P(r, t), (1)

where P(r, t) is the molecular charge density including nuclear
charge and rc is some cavity radius in which the molecular
charge density is contained. R(r, t) is the solvent reaction
potential induced by the molecular charge density and could
have complicated dependence on P(r, t).1,7,32 In a Taylor
expansion of R(r, t), the zeroth order term describes static
charges and vanishes when no net charge is apparent on the
cavity surface. This is not the case when, e.g., a dissolved
ion is present in the molecule’s solvation shell. Nonlinear
terms can be neglected most accurately for solutes with small
dipole moments. However, it has been found to be a good
approximation for polar solvents in experiments33 and seen
broad success for the calculation of solvent effects in molecular
systems.23

We are thus able to use a linear response approximation
for the solvent. Others have implemented a linear response
approximation for R(r, t) in DFT and LR-TD-DFT where the
solvent reaction potential can be determined to first order in
P(t,r) as

R(t,r) =
 rc

0
dr ′

 t

−∞
dt ′V(t, t ′,r,r ′)P(t ′,r ′), (2)

whereV(t, t ′,r,r ′) is like a linear response function for relating
the time dependent molecular charge density to the solvent
reaction potential.

A. Nonequilibrium reaction potential

Thus far, we have not defined an approximation
for describing the solvent reaction potential. Others have
used the Onsager model or Integral Equation Formalism
(IEF)-PCM.7,31 In general, the kernel of Eq. (2) can be
described using apparent surface charge (ASC) methods.
Using ASC methods, the molecular charge density is contained
in a polarizable cavity of arbitrary shape. The problem
is solved electrostatically using boundary values for the
frequency dependent dielectric constant ϵ(ω). Inside of the
cavity ϵ(ω) = 0 while outside of the cavity ϵ(ω) has finite
value.34 Upon solution of the Poisson equation, V(t, t ′,r,r ′)
can have complicated dependence on ϵ(ω) which makes
obtaining a simple analytical expressions difficult to be
derived for time propagation of R(t,r). Others have derived
expressions based on a specific type of ASC method with
an initial condition based on a step change in the molecular
charge density. This step change, signifying photoexcitation,
leads to the nonequilibrium solvent response. In this case,
integration of Eq. (2) has been performed using the methods
of Hsu, Song, and Marcus.7

In developing nonequilibrium solvent effects for BOMD,
we allow for an initial condition based on the memory of
past solute charge density fluctuations. This is different from
previous formulations which used a step change in charge
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density to form a nonequilibrium solute-solvent interaction.
To do so, we first make the factorization approximation for
V(t, t ′,r,r ′) discussed in detail by Fried and Mukamel.32 This
approximation is closely related to CPCM. In CPCM Eq. (2)
is solved in the limit of ϵ(ω) → ∞. Then, a function of the
dielectric constant f (ϵ(ω)) is inserted for finite ϵ(ω) in the
resulting reaction potential.34 In this case, R(ω,r) can be
written as a product of f (ϵ(ω)) and a function describing
the unscaled potential associated with the distribution of
apparent surface charge, R̄(ω,r). Here, frequency and time
dependent variables are straightforwardly related by the
Fourier transform,

R(ω,r) = f (ϵ(ω))R̄(ω,r,r ′)
= f (ϵ(ω))

 rc

0
dr ′V̄(ω,r,r ′)P(ω,r ′), (3)

where f (ϵ(ω)) acts as a scaling function and V̄(ω,r,r ′) is
the possibly time-dependent factor of the solvent reaction
potential involving the spatial structure of the cavity. This
factorization later allows analytical energy gradients to be
formulated.

As in CPCM, f (ϵ(ω)) is given here by

f (ϵ(ω)) = ϵ(ω) − 1
ϵ(ω) . (4)

Several models exist to describe ϵ(ω). The Debye model is the
simplest and most widely known, being described by a single
exponential function.35 Other models generalize the solvent
response to multiexponential or nonexponential behaviour
such as in the Cole-Davidson model.36 In several studies of
nonequilibrium solvent response, experimental data have been
used for this quantity, either for the entire solvent response
or for only the high frequency portion of the response when
combined with a model for the lower frequency region.8,31,32

In the Debye model, ϵ(ω) is given by

ϵ(ω) = ϵ∞ +
ϵ0 − ϵ∞

1 + iωτD
. (5)

The static and optical dielectric constants are ϵ0 and ϵ∞,
respectively, and τD is the Debye relaxation time for a given
solvent. The Debye model describes the solvent polarization
due only to solvent dipole orientation and neglects the induced
polarization of the solvent. This causes the instantaneous
polarization to be neglected. The instantaneous polarization is
mostly relevant for fast processes such as when a molecule is
photoexcited. The molecular motion occurs on a longer time
scale and is mainly affected by the slower relaxation of the
solvent, as it is on a longer time scale. The neglect of the high
frequency response of the solvent present in the Debye model
is thus a good approximation for molecular dynamics.

It is required that the solvent response to the molecular
charge density at times infinitely in the past is zero such that

lim
t0→−∞

f (t − t0) = 0. (6)

Using the Debye model and enforcing this limit gives

f (t) = τ−1
D

ϵ0 − ϵ∞
ϵ0ϵ∞

e−
t

τL (7)

in the time domain where τL = τDϵ0/ϵ∞ is called the
longitudinal relaxation time. This equation departs from the
previous works which follow Hsu, Song, and Marcus where
the molecular charge density at times infinitely in the past is
constant.37 In some previous studies, the electrostatic potential
of the cavity surface is separated into a static partition due
to the ground state charge density and a partition due to
the difference in charge density between the ground and
excited state. This difference in charge density has been based
on an instantaneous change due to photoexcitation and is
introduced using the unit step function. In the following, we
have instead formulated the problem such that a step change
in the charge density is not necessary for nonequilibrium
effects. For example, one could use the reaction potential
corresponding to the ground state charge density and then
propagate on the ground state potential energy surface with
nonequilibrium solvent effects.

If it is assumed that the solute and solvent are at
equilibrium before some time t0 such that the equilibrium
solvent potential R(−∞) is static, we can write R(t; t ≤ t0)
= R(−∞). Then, the time integral related to Eq. (2) is

R̄(−∞)
 t0

−∞
dt ′ f (t0 − t ′) = ϵ0 − ϵ∞

ϵ0ϵ∞
R̄(−∞). (8)

For brevity, here and in the remainder of this section, the spatial
dependence of quantities is not written unless necessary,
e.g., R̄(ω) is equivalent to R̄(ω,r). Eq. (8) provides the initial
conditions of a solute-solvent equilibrium. It has a different
form from the static PCM equations due to the integration
over f (t0 − t ′). The magnitude of the total solvent effect
at this initial condition is controlled only by the dielectric
constants. For photoexcitation or propagation on the ground
state potential energy surface with nonequilibrium solvent
effects, one would choose the initial reaction potential R(t0)
according to the ground state charge density self-consistently
optimized in the reaction potential given by Eq. (8). For
photoemission a similar procedure is performed with the
excited state charge density.

B. Integration scheme for the reaction
potential in BOMD

In BOMD, each time step involves a self-consistent poten-
tial calculation, calculation of molecular forces, and classical
propagation of nuclei. At time t, R(t) can be included in the
electronic Fock or Kohn-Sham operator F(t) according to

F(t) = h(t) +U(t) + R(t), (9)

where h(t) is the one electron operator, U(t) is the Coulomb-
exchange operator for Hartree-Fock38 or the Coulomb, ex-
change and/or exchange-correlation operators for Kohn-Sham
and hybrid DFT.39,40 Both U(t) and R(t) depend on the den-
sity matrix P(t), but only R(t) involves memory effects from
nonequilibrium solvation, i.e., it depends on the density matri-
ces calculated in previous time steps. To calculate the effective
solvent potential for each subsequent time step beginning from
the initial condition of Eq. (8), we write

R(t + ∆t) =
 t+∆t

−∞
dt ′ f (t + ∆t − t ′)R̄(t + ∆t, t ′), (10)
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where R̄(t, t ′) = V̄(t, t ′)P(t ′) and ∆t is the time step used in
the time integration of the molecular dynamics simulation.
For later calculation of forces, the part of this integral related
to the next time step, called the instantaneous part RI(t), must
be treated differently from the part related to previous time
steps, called the memory part, RM(t),

R(t + ∆t) = RI(t + ∆t) + RM(t + ∆t), (11)

where RI(t + ∆t) and RM(t + ∆t) are given by

RI(t + ∆t) =
 t+∆t

t

dt ′ f (t + ∆t − t ′)R̄(t + ∆t, t ′),

RM(t + ∆t) =
 t

−∞
dt ′ f (t + ∆t − t ′)R̄(t + ∆t, t ′).

(12)

Using the Debye type model for f (t), these integrals are
readily transformed into equations which are tractable for use
in BOMD simulations.

We first note that when using the Debye model, the
memory effects can be exactly propagated from the previous
time step according to

RM(t + ∆t) = e−∆t/τLR(t). (13)

On the other hand, the instantaneous effects require further
approximation. One method of calculating RI(t + ∆t) is to
assume constant R̄(t + ∆t, t ′) between t ′ = t and t ′ = t + ∆t.
The result is

RI(t + ∆t) = ϵ0 − ϵ∞
ϵ0ϵ∞

(1 − e−
∆t
τL )R̄(t + ∆, t). (14)

One could also linearly interpolate between the current and
previous time step. However, this would not provide analytic
excited state energy gradients due to issues with the ground
state variational principle described in Sec. III.

Caricato et al. developed a multistep integration
procedure for use with similar nonequilibrium solvent models
in TD-DFT which was used by Ding et al. to propagate the
solvent reaction potential in RT-TD-DFT electronic dynamics.
This procedure is more general than the one presented here in
that it allows for use of an experimental dielectric function to
be used. It is therein necessary to store information about the
reaction potential at each time step. This could quickly become
cumbersome for a long time scale or large BOMD simulation.
Thus, we have opted to use the alternative approach described
above for propagation of the solvent since it requires storage
of the information from only the previous time step.

The Debye model of dielectric relaxation is based on
the rotational diffusion of static solvent dipoles. It does not
include the effects of electronic polarization of the solvent,
which is often the main source of instantaneous solvent effects.
Although this provides justification for the approximation of
Eq. (14), it neglects some aspects of the physical picture. It
may be possible to include instantaneous polarization effects
in these simulations by using a different form of ϵ(ω).

By combining the approximate RI(t) given by Eq. (14)
with Eqs. (13) and (11), it is now possible to efficiently
propagate nonequilibrium dynamic solvation effects according
to the Debye model and calculate forces as described in
Sec. III.

III. MOLECULAR ENERGY GRADIENT AND FORCES

We now describe the main result of this paper, the
molecular energy gradients and forces. These allow BOMD to
be performed with nonequilibrium solvent effects. The ground
state energy is the sum of components without solvent effects
and Esolv(t)

Egs(t) = Ēgs(t) + Esolv(t), (15)

where the part of the energy without solvent effect and its
gradient are given elsewhere.14,21

In the following, the gradient of Esolv with respect
to nuclear coordinate Q is formulated. When using the
static instantaneous potential approximation, R(t,r ′) does not
depend on P(t,r). The energy gradient is

E(Q)
solv(t) =

 rc

0
drP0(t,r)

 rc

0
dr ′

×
 t

−∞
dt ′ f (t − t ′)V̄ (Q)(t, t ′,r,r ′)P(t ′,r ′). (16)

Since P0(t,r) is the ground state charge density, E(Q) is
stationary with respect to variation of P0(t,r) so that the only
factor involving a gradient on the left hand side of Eq. (16)
is V̄ (Q)(t, t ′,r,r ′). This allows the analytical gradient to be
formulated for a specific PCM type model of the solvent
potential according to previously developed methods.41,42

The charge density polarizing the solvent when
performing excited state BOMD is P(t,r) = P0(t,r) + P∆(r, t)
where P∆(r, t) is the so-called relaxed difference in density
between the ground and excited state.14,21,43 When the static
instantaneous potential approximation is used, R(t,r) has
no dependence on P(t,r) at the current time step. If it
did, the variational principle for P0(t,r) would not hold as
described in detail in Ref. 14. When performing ground state
BOMD, P∆(r, t) = 0. Then, it is not necessary to resort to
the static instantaneous potential approximation for analytical
gradients. However, the ab initio calculation at each time
step would require a self-consistent calculation between the
reaction potential and molecular charge density. This is not
necessary for the methodology outlined herein.

This property of R(t,r) when using the static instanta-
neous potential approximation is important for excited state
energy gradients. It eliminates breaking of a variational
principle for quantities calculated in the DFT or LR-TD-
DFT equations with a state-specific equilibrium formulation.14

There, the inclusion of instantaneous polarization effects could
not be avoided such that a stationary excited state charge
density could not be found. Due to the stationarity of P(r, t)
described above for the nonequilibrium formulation described
here, the following equations are sufficient for a description of
the gradient of the solvent effects in the excited state energy.14

The excited state energy at time t is the sum of the ground
state and excitation energy Ω(t),

Ees(t) = Egs(t) +Ω(t). (17)

The excitation energy is separated into portions with solvent
effects, Ωsolv(t), and without, Ω̄(t),

Ω(t) = Ω̄(t) +Ωsolv(t). (18)
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Similarly to Eq. (15), the gradient of Ωsolv(t) can be written as

Ω
(Q)
solv(t) =

 rc

0
drP∆(t,r)

 rc

0
dr ′

×
 t

−∞
dt ′ f (t − t ′)V̄ (Q)(t, t ′,r,r ′)P(t ′,r ′), (19)

where R(t,r) does not depend on P∆(t,r) at the current time
step. When the methods of calculating the excited state energy
gradient in the gas phase are followed, namely, using the so
called Z-vector equation,21 Ω(t) is stationary with respect to
variation of P∆(t,r) and Eq. (19) holds.

Forces are calculated directly from these potential energy
gradients. For microcanonical dynamics performed here, the
force is equivalent to −E(Q)

gs (t) or −E(Q)
es (t) for the ground

state or excited state at each time step. Here we note that the
solvent effects on the forces described in this study are affected
only by the screening effects of the solvent on the coulombic
interactions in the solute. They do not include the effects
of coupling between solvent and solute vibrational modes,
commonly discussed in terms of fluctuations and dissipation.
These effects can be included, for example, using a Langevin
type equation of motion in BOMD. Further details of model
computations for testing the described nonequilibrium effects
are given below.

IV. COMPUTATIONAL METHODS

The microcanonical BOMD performed here follow the
methodology detailed in several prior publications.12,19,44–48

Nuclear degrees of freedom are propagated using Verlet inte-
gration in a microcanonical scheme. The electronic structure
is calculated using semiemperical AM1 model chemistry.18,49

For testing purposes, an Onsager type solute-solvent
interaction, i.e., dipole in a spherical conducting cavity, is used
for the effective solvent potential. The radius of the sphere
is held constant during the dynamics simulation at 5 Å. This
type of model potential avoids possible issues related to the
movement of an explicit cavity, e.g., a superposition of atom
centered spheres, which could arise in these dynamics due to
the need to store the solvent cavity charges from the previous
time step and the number of charges being recalculated at
each subsequent time step. This issue can be solved using
the variational PCM method of Lipparini and colleagues.50

Here, we intend to test the propagation of the nonequilibrium
solvent reaction potential in BOMD and use an Onsager-like
effective potential which avoids this issue. The model solvent
effective potential operator can be written explicitly as

V̄(t, t ′,r,r ′) = Rc(t)−3µ̂(0,r) · µ̂(t − t ′,r ′), (20)

where µ̂(t,r) is the dipole operator and Rc(t) is a (possibly)
time-dependent cavity radius. The gradient of this potential
with respect to nuclear coordinate Q is straightforwardly given
by

V̄ (Q)(t − t ′,r,r ′) = −Rc(t)−3µ̂(Q)(0,r) · µ̂(t − t ′,r ′), (21)

where we assume a constant cavity radius Rc(t). The cavity
radius need not be kept constant and may depend on the
molecular configuration, but the gradient then depends on

TABLE I. Parameters for the solvents water and acetonitrile used in
simulations.

ϵ0 ϵ∞ τD (ps) τL (ps)

Water 78.36 1.78 8.2 0.32
Acetonitrile 35.95 2.00 3.9 0.21

the method by which the radius is determined. We note that
the derivative of µ̂(t − t ′,r) is zero if t − t ′ < 0. Practically,
calculation of R(t) at each time step under the approximations
outlined above involves calculation of the molecular dipole
in the ground or excited state, updating RM according to
Eq. (13), and calculation of RI according to Eq. (14). The
energy gradient is then straightforwardly calculated according
to Eq. (21).

Simulations are performed on acetaldehyde as a test
system for the solute. Solvent effects are parameterized for
the solvents acetonitrile and water using the values given in
Table I.8 All simulations are performed using initial conditions
corresponding to the optimized ground state geometry
with solvent effective potential operator corresponding to
Eq. (20) and a dielectric scaling factor corresponding to
Eq. (8). As described above, simulations of dynamics after
photoexcitation use the ground state molecular charge density
for the initial condition in Eq. (8). For simulations of dynamics
after photoemission, the so called relaxed excited state charge
density corresponding to the first excited state is used.14,21

The initial velocities for Verlet integration are set to zero and
dynamics performed with a time step of 0.1 fs. Simulations
are performed for 1 ps. For comparison, simulations are also
carried out with frozen nuclei, where at each time step a new
electronic structure calculation is carried out with updated
solvent effects and constant nuclear configuration.

V. RESULTS AND DISCUSSION

The total potential energy is given in Fig. 1 for simulations
of dynamics after photoabsorption or emission, corresponding
to either the excited state energy Ees or ground state energy
Egs. For static simulations, the potential energy reaches an
equilibrium after a time scale associated with τL. A similar
trend is seen in simulations with moving nuclei, although
fluctuations corresponding to the classical motion of the nuclei
are still present.

The initial condition for atomic coordinates is the
optimized ground state geometry for both simulations of
dynamics after photoabsorption and emission. As expected,
the changes in energy for static nuclei are then mirror
images. It is also observed that the effect of nonequilibrium
solvation is stabilizing for dynamics after photoabsorption
and destabilizing for dynamics after photoemission. This is
due to a decrease in the dipole moment of the first excited
state relative to the ground state as shown in Fig. 2. Here, the
evolution of the dipole moment of the solvent, ∥ µ⃗S∥ is shown.
As the nonequilibrium solvent effects evolve, the solvent
dipole tends toward a scaled ground state dipole moment for
post-photoemission dynamics and scaled excited state dipole
moment for post-photoabsorption dynamics.
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FIG. 1. Change in the potential energy ∆E of acetaldehyde during excited
state dynamics. Solvent parameters for acetonitrile and water are used.
Dashed lines correspond to frozen nuclei. Smoother, initially increasing lines
correspond to post-photoemission simulations and initially decreasing lines
represent post-photoabsorption simulations. For post-photoabsorption simu-
lations ∆E =∆Ees, while for post-photoemission simulations ∆E =∆Egs.

In simulations with moving nuclei, similar trends are
seen in the evolution of ∆E as in the case of frozen nuclei.
However, fast oscillations are present in post-photoabsorption
dynamics induced by excitation to the first singlet excited state
surface in the optimized ground state geometry. These fast
oscillations are not present in the evolution on the ground state
potential energy surface for post-photoemission dynamics.
Simulations of photoabsorption in molecular dynamics also
show an increased stabilization compared to static simulations
due to relaxation of the molecular structure. This is not seen

FIG. 2. Solvent dipole moment during excited state dynamics of acetalde-
hyde. Solvent parameters for acetonitrile and water are used. Dashed lines
correspond to frozen nuclei. Initially increasing dipole moments correspond
to post-photoabsorption simulations, while initially decreasing dipole mo-
ments correspond to post-photoemission simulations.

in post-photoemission dynamics since the geometry is already
relaxed on the ground state potential energy surface.

For post-photoemission dynamics, a more realistic choice
of initial conditions would involve optimization of the
molecular geometry on the excited state potential energy
surface. Efficient use of common optimization tools such as the
conjugate gradient method would require analytical gradients
to be formulated for a state specific solvent model. This is not
possible due to the lack of available variational formulations
of the excited state energy when a state specific solvent model
is used.14 However, optimization of the molecular geometry
for a state-specific solvent model in LR-TD-DFT could be
performed by combining the methods described here with
simulated annealing methods in molecular dynamics. This is
currently under development and will be described in a future
publication. We also intend to explore nonequilibrium solvent
effects for nonadiabatic excited state molecular dynamics.

VI. CONCLUSION

In this study, analytical energy gradients and forces
were formulated for nonequilibrium solvent effects in Born-
Oppenheimer molecular dynamics using linear-response time-
dependent density functional theory and apparent surface
charge methods. A method of propagating the solvent
degrees of freedom in excited state molecular dynamics
was described in a factorization approximation that is
identical to the conductor-like polarizable continuum model.
Analytical gradients for the excited state energy with
nonequilibrium solvent effects were then easily formulated.
The nonequilibrium solvent effects were demonstrated in
dynamics after photoabsorption and emission.

Although our method was demonstrated with an Onsager-
type cavity, it is generally formulated for apparent surface
charge methods. Implementation of a variational polarizable
continuum model will allow for practical application of more
realistic cavity shapes for nonequilibrium solvent effects in
excited state Born-Oppenheimer molecular dynamics. We also
intend to explore inclusion of the electronic (instantaneous)
polarization of the solvent. The solvent effect on the forces
described here does not include the direct effects of solvent
viscosity as the nuclei move. Only the effects of solvent polar-
ization on the Coulombic interactions in the solute are simu-
lated. We intend to couple a Langevin type equation of motion
to the nonequilibrium relaxation of the solvent to capture both
concerted effects. Using the methods developed here, it will
be possible to use simulated annealing techniques to optimize
the molecular geometry in an excited electronic state with
state-specific solvent effects. This method solves the issue of
optimizing geometry with equilibrium state specific models
due to the lack of analytical gradients found in our previous
publication. We also intend to explore nonequilibrium solvent
effects in nonadiabatic excited state molecular dynamics using
the presented and further developments.
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