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ABSTRACT
The Hückel Hamiltonian is an incredibly simple tight-binding model known for its ability to capture qualitative physics phenomena arising
from electron interactions in molecules and materials. Part of its simplicity arises from using only two types of empirically fit physics-
motivated parameters: the first describes the orbital energies on each atom and the second describes electronic interactions and bonding
between atoms. By replacing these empirical parameters with machine-learned dynamic values, we vastly increase the accuracy of the extended
Hückel model. The dynamic values are generated with a deep neural network, which is trained to reproduce orbital energies and densities
derived from density functional theory. The resulting model retains interpretability, while the deep neural network parameterization is smooth
and accurate and reproduces insightful features of the original empirical parameterization. Overall, this work shows the promise of utilizing
machine learning to formulate simple, accurate, and dynamically parameterized physics models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052857

I. INTRODUCTION

“The underlying physical laws necessary for the math-
ematical theory of a large part of physics and the whole
of chemistry are thus completely known, and the diffi-
culty is only that the exact application of these laws lead
to equations too complicated to be soluble.”59

The combination of quantum mechanics (QM) and machine
learning (ML) is an emerging research field in the interdisci-
plinary areas of physics, mathematics, chemistry, and materi-
als science. The rapidly growing pool of ML algorithms (see
reviews1–3 and references therein) along with a robust deep learn-
ing software ecosystem (TensorFlow,4 PyTorch,5 etc.) suggests that
we are approaching the next key milestone in the evolution of

computational chemistry. The development of neural-network (NN)
ML interatomic potentials (MLIPs) and their successful applica-
tion to high-dimensional systems have been demonstrated by many
research groups.6–14 Among the diverse subjects in ML, robust and
transferable prediction of the molecular electronic structure is now
one of the most intensively studied directions, making ML methods
more accessible for the solution of the Schrödinger equation (SE).15

Modern computational methods of quantum chemistry mainly deal
with the molecular orbital (MO) theory first formulated by Hückel
in 1930s.16–18 Hückel revealed an importance of a very basic locality
in molecular and/or atomistic systems, with his insights now being
implemented in almost every QM computational method. In par-
ticular, he suggested that the QM model built only on a subgroup
of functions (in that particular case—wave functions of π-orbitals),
which are responsible for the QM properties of the substance omit-
ting the rest of the system components (as σ-electrons), has an
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ability to predict those properties quite efficiently. From the math-
ematical point of view, such a suggestion is equivalent to the sepa-
ration of variables in the one-electron Schrödinger equation (SE). It
results in the restriction of the form of the wave function of all elec-
trons to the antisymmetrized product of the functions of electron
groups containing fewer electrons. For example, in semi-empirical
(SQM) and pseudopotential methods, the wave functions of atomic
core elements are not considered. In the ab initio methods, the
aforementioned approximation is implemented implicitly due to the
employment of a finite set of basis functions (the interactions of
the rest of atomic orbital functions are omitted). From the view-
point of practical applications of ML methods in QM, the idea of
the locality of chemical properties in atomistic systems is of signifi-
cant importance. The implementation of ML algorithms is mainly
based on the fact that QM properties can be learned by splitting
them into features of individual atoms with their local environ-
ment within some cutoff.7,19 Modern deep NN models automatically
learn important features of the local atomic environment (AE) from
local atomic vectors. Featurization of AE is general enough and does
not require manual engineering of task-specific features to achieve
a state-of-the-art performance in predictions of QM properties.1,2

Additionally, the training time scaling becomes polynomial against
the number of datapoints (in contrast to the exponential time scal-
ing of QM methods), making it practical to learn from datasets of
millions of QM data.

By training MLIPs to approximate QM results, it is now possi-
ble to reproduce high-level QM properties at a rate of microseconds
per atom and get very accurate results in specific applications. With
that, the quantity, quality, and types of interactions included in the
training dataset dictate the accuracy of MLIPs. As mentioned by
Dral,3 MLIPs trained to reproduce properties of neutral molecules
may not be appropriate for the description of charged molecules
and radicals, and once trained for ground-state energies, they will
fail predicting excitation energies. Although the advanced MLIPs
are entirely data-driven, they do not necessarily capture the under-
lying physics and chemistry of atoms in molecules. As discussed by
Manzhos,15 the highly accurate solutions and acceptability for QM
applications will be likely achieved by combining generic properties

of ML with modifications specific to the problem of solving the SE
or building functionals, including the task-specific training dataset
and adapted architectures of NN.

Basically, integrating ML with QM can be achieved in mul-
tiple ways (Fig. 1). In series of works,20–22 the NN directly pre-
dicts wave functions based on QM data. A fundamentally different
way is to use ML algorithms to improve the electronic Hamilto-
nian. In this light, Dral23 introduced a hybrid ML-SQM automatic
parameterization technique (APT). It is based on ML models
of parameters as a function of molecular structure. The authors
used APT for predicting molecule-specific corrections to the QM
parameters that improved accuracy of semiempirical QM (SQM)
calculations. Li et al.24 used NN and spline-based ML models to
tune matrix elements of the self-consistent-charge tight-binding
(DFTB) Hamiltonian. With the hybrid ML-DFTB APT model, they
succeeded to substantially reduce prediction errors on energy and
dipole moments for small hydrocarbons. We suggest, however, that
APT could be used to build a general-purpose and transferable
ML-SQM model for electronic structure prediction across vast
chemical space with the accuracy of ab initio methods. Hence, we
here introduce a ML-based semi-empirical model based on the
extended Hückel method (ML-EHM), where ML is used as an
APT to determine the on-the-fly optimal matrix elements of the
one-electron tight-binding Hamiltonian as a function of local AE.

In the present article, we start with overviewing a new gener-
ation of computational methods based on ML and QM interfaces.
The EHM serves us as a starting point, and we further extend it con-
sidering the complications arising in the ML domain. In this proof-
of-concept study, our first objective is to determine the ML-EHM
accuracy and transferability of the ML Hamiltonian. We detail the
ML-EHM architecture and training procedure in Sec. II. In Sec. III,
we benchmark datasets of organic molecules containing four atomic
species {H, C, N, and O}. In Sec. IV, we demonstrate how ML-
EHM retains the conceptual strength of QM by performing covalent
bond extension in the methane molecule. The second case study
examines the behavior of the Hamiltonian eigenvalues upon inter-
nal rotation around single bonds in butadiene and aza-butadiene
molecules.

FIG. 1. A typical use of ML in quantum chemistry. The left block denotes QM calculations used to generate training datasets. Right block: (1) ML can be used to predict QM
properties (energies, charges, enthalpies, etc.). (2) The Hamiltonian itself can be parameterized by ML. (3) ML can be used to predict the wave function.
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II. ML-EHM FRAMEWORK
A. The extended Hückel method

Similar to the Hückel method,16–18 the EHM25,26 calculations
employ a simplistic tight-binding form of the Hamiltonian, taken
as a sum of single-electron interactions. The linear combination of
atomic orbitals (LCAOs) Ψi = ∑jcijφj identifies the molecular orbital
(MO) without an anti-symmetrization operation. The basis set con-
tains only the atomic-like orbitals for the valence shell. According
to EHM, the SE was solved in a non-orthonormal basis of AO,
thus requiring a generalized eigensolver algorithm to address the

following matrix diagonalization problem:

HC = εSC, (1)

where C is the matrix of coefficients for the AO. Each column in
matrix C defines one MO in terms of AO basis functions. In the
EHM, the overlap is not neglected and S is the matrix of overlap
integrals between the AO basis functions ∣χμ⟩. ε is the diagonal
matrix of orbital energies, EMO. H is a square matrix containing the
one electron energy integrals. Specifically, the definition of the EHM
Hamiltonian H is given by

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α11
1
2

K‡
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2
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⋮
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2

K‡
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⋮
1
2

K‡
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⋮ ⋮

1
2

K‡
(α11 + αNN)S1N

1
2

K‡
(α22 + αNN)S2N

⋮ ⋮

⋮ αNN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2)

where N is the total number of AO basis functions. For EHM calcu-
lations, we need to set up all those matrices and then find the eigen-
values and eigenvectors [Eq. (1)]. The eigenvalues are the orbital
energies, and the eigenvectors are the orbital coefficients that define
the molecular orbital in terms of basis functions (i.e., the LCAO
expansion).

In SQM, the diagonal elements of H [Eq. (2)] Hμμ = αμμ are
parameterized as valence state ionization energies (IEs) with a minus
sign to indicate binding. The off-diagonal Hamiltonian matrix ele-
ments are given by an approximation of the Wolfsberg–Helmholtz
formula27 that relates them to the diagonal elements and the overlap
matrix element,

Hμν = ⟨χμ∣Ĥ∣χν⟩ =
1
2

K‡
(Hμμ +Hνν)Sμν, (3)

where K‡ is an empirically fit parameter, which scales the contribu-
tion of AO energy and overlap to the energy of MO.27

1. Choice of αμμ

The diagonal Hμμ = αμμ elements in EHM [see Eq. (2)] are
parameterized as negative of the valence state IEs for the appropri-
ate isolated atom, as given by Koopmann’s theorem.28 In molecules,
however, the atomic orbital energies are hybridization-dependent
or, more generally, are environment-dependent. For example, IE for
the isolated carbon atom differs from IE of the carbon atom in a
saturated molecule because the associated configurations of those
carbons are different: 1s22s22p2 vs 2sp3. Furthermore, the proper
valence state for carbon in methane differs from that in ethylene,
which, in turn, differs from that in acetylene, that is why various
authors recommended molecule-specific sets of valence IEs.29,30

2. Choice of K‡

The coefficient K‡ [Eq. (3)] is an additional dimensionless
empirical parameter that depends on the state of the molecule.27,31

The rationale for Eq. (3) is that the energy should be proportional

to the energy of the AO and should be greater when the over-
lap of the AOs is greater. The contribution of these effects to the
energy is scaled by the K‡ coefficient. For organic molecules, the
EHM model was found to best agree with the experiment when
K‡
= 1.75,32 while for solids, a value of 2.3 is believed to be optimal.31

While K‡ is usually being constant, the inclusion of overlaps into off-
diagonal elements (Hμν) of the Hamiltonian H [Eq. (2)] enforces that
well-separated AOs do not interact.

B. ML parameterization of EHM
The idea behind the on-the-fly parameterization of EHM relies

on the use of ML to locally learn the H Hamiltonian matrix elements
[Eq. (2)]. To this end, we have introduced the following procedure:

(1) Find QM values of coefficients for the AO and MO energies
for each individual molecule in the training dataset {C, EMO}.

(2) Train the H [Eq. (2)] Hamiltonian with αμμ and K‡ variables
to reproduce QM values from the previous step. Solve the
eigenvalue problem [Eq. (1)].

(3) Use the ML H Hamiltonian in the new eigenvalue equation
[Eq. (1)] to predict {C, EMO} values for the target molecules.

As can be seen from above, interfacing ML with the EHM is
accomplished by replacing the empirical matrix elements αμμ and
coefficients K‡ with their ML learnable counterparts. The choice of
the learnable parameters is deliberate since the one-electron inte-
gral αμμ [Eq. (2)] is a function of nuclear charge and the type of
AO; thus, it encodes the information about the local chemical com-
position given by the types of chemical elements. The coefficient
K‡ scales the contributions of the AO energies and AO overlaps
to the MO energies. Thus, the K‡ value is bond-dependent33 and
its role is to properly introduce the ith atom in the molecule in
terms of its pairwise local structure. As the atomic chemical com-
position and the local atomic structure depend on higher-order
features of atom’s entire chemical environment (i.e., bond order,
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conjugation, and hybridization), it is reasonable to approximate
those unknown complex functions with NN. In the proposed ML-
EHM scheme, NN models are aimed to reproduce the DFT ref-
erence orbital energies and respective MO densities for organic
molecules containing four atom types: H, C, N, and O, as will
be outlined in Subsection II C. Our NN model utilizes a DFT
labeled training dataset to automatically learn representations of
local AEs, which comes enough to predict Hamiltonian matrix
elements.13

C. Neural network for Hamiltonian
The generic ML-EHM is based on a hierarchically interacting

particle neural network (HIP-NN, Fig. 2).13 In general, HIP-NN
implements the idea of atomic environment vectors (AEVs) and
encodes the atomic configuration as a vector. Basically, AEV intro-
duces the ith atom in terms of its (i) local structure R, described
by a set of coordinates of all atoms within a cutoff, and (ii) local
chemical composition Z, given by the types of chemical elements.
HIP-NN encodes the atomic configurations using pairwise distances
Rij = ∣Ri − Rj∣ with ith atom neighbors within a cutoff radius Rc

into invariant fixed-length AEV, S⃗Z
ν = {S1, S2, S3, . . . , Sν}. Elements

Sν probe specific regions of ith atom radial chemical environment
and are assigned as spatial sensitivity functions.13 The key point of
HIP-NN is that it encodes local chemical composition with learn-
able feature vectors (FVs), Z⃗ℓ

i = {Z
0
1 , Z1

2 , Z2
3 , . . . , Zℓ

i }. The learning
of Z⃗ℓ

i occurs through the interaction layer (green block) and on-
site layer (red blocks), Fig. 2(b). On-site layers operate on the FVs
of a single atom. The interaction layers additionally transmit infor-
mation between atoms. Thus, the “message passing” in the inter-
action layers learns the atomic representations. “Message passing”
not only captures the chemical environment of the ith atom but
also accounts for the properties of the entire molecule. That makes
HIP-NN a valuable tool capable of quantitative predicting of non-
local molecular properties, such as, for instance, behavior of molec-
ular orbitals.

Based on the learned representation of each atom, we trained
HIP-NN to predict the contribution of this atom to the matrix

FIG. 2. (a) The molecular geometry is encoded in terms of feature vectors (FVs) to
characterize the chemical environment of atoms {I, J} and pairwise distances within
the radial cutoff {Z0

i , Rij }. (b) HIP-NN builds sets of FVs through the interactions and
on-site layers (green and red blocks, respectively). The FVs of an atomic pair are
built through the pair regression layer (upper gray blocks). The total AO energies
of each atom α(I,J)

μμ and pairwise K‡
(I,J) parameter include their contributions αn

i

and Kn
i at all sites i and hierarchical levels n. (c) The EHM Hamiltonian, H, is built

with the parameters {K‡, αμμ} of each atom and atomic pair. These parameters
provide the eigenvalue problem to be solved next to find MO energies, EMO.

elements of the Hamiltonian, {K‡, αμμ}. Once the FVs are known,
HIP-NN uses linear regression [Fig. 2(b), blue boxes] on the ith atom
to model the local hierarchical output,

αn
i = ∑

N
k=1ωn

k Zℓn
i,k + bn, (4)

where ωn
k and bn are learnable parameters. Zℓn

i,k from the layer is
indexed by ℓ = 0, . . . , N layer . Finally, these hierarchical contributions
[Eq. (4)] are combined together to recover the target diagonal matrix
element of the Hamiltonian

Hμμ = αμμ = ∑
Ninteraction

n=0 αn
i . (5)

The hierarchical decomposition is non-unique but should be
designed such that αn

i rapidly vanishes with increasing order n.
To encourage this, we used a hierarchical regularization scheme
developed earlier.13 The learned elements {K‡, αμμ} are then used
for solving an eigenvalue problem [Eq. (1)], i.e., finding EMO and
coefficients, Cν, of AO according to a secular equation [Fig. 2(c)],

∑
NAO

ν=1 (Hμν − EMOSμν)Cν = 0, μ = 1, . . . , NAO. (6)

D. Extension of HIP-NN for K‡

The original HIP-NN potential has been constructed to predict
atomic energies,13 charges,34 and dipoles35 in terms of local atomic
charges or energy approximations. To predict K‡, a quantity that
depends on the interaction of two atoms in the off-diagonal ele-
ments [Eq. (3)], we have introduced a new type of layer into the
HIP-NN framework [Fig. 2(b)]. The latter enables HIP-NN to learn
several matrix elements {K‡, αμμ} of the Hamiltonian within the
same framework. This pair regression layer in Fig. 2(b) produces a
set of features for each pair of atoms in the molecule. At every hier-
archical level ℓ, there is a learnable matrix as a function of distance
uℓ

ab(r), where the a and b indices contract over the pair of atomic
features,

uℓ
ab(r) = ∑νUℓ

τ,absℓτ(r). (7)

The sensitivity functions sℓτ(r) are parameterized as in the inter-
action layers (the technical details are given in Ref. 13). Uℓ

ν,ab is a
three-dimensional tensor of learnable parameters. The pair-valued
parameter K‡(ℓ)

(I,J) is computed as a bilinear function,

K‡(ℓ)
(I,J) = ∑a∑bzℓI,auℓ

ab(rIJ)zℓJ,b + (I ↔ J). (8)

Here, a and b indices feature vectors on neighboring atoms I and J,
respectively. The second term in Eq. (8) carries out the symmetriza-
tion of the K‡

(I,J) matrix. The prediction for K‡
(I,J) is constructed

by summing over the contributions from each hierarchical block ℓ,
similarly to Eq. (5),

K‡
(I,J) = ∑

ℓ

K‡ℓ
(I,J). (9)
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The predicted K‡
(I,J) matrix exists over atom pairs, whereas K‡

μν

needed for EHM exists over orbital pairs. To resolve this dimension
mismatch, the predicted K‡

(I,J) is expanded over the orbital indices
such that all orbital pairs that share atom centers also share the
same K‡

μν parameter. Thus, from a high-level perspective, a modi-
fied HIP-NN framework in Fig. 2(b) allows for learning the entire
matrix, including diagonal (on-site values) and off diagonal (interac-
tion) elements. Recently, this model was successfully applied to learn
chemical bond orders36 relevant to off-diagonal matrix elements of
the single-electron density matrix.

E. Loss function for training
We train the ML-EHM by varying the HIP-NN parameters

[Eqs. (4) and (8)] to minimize a loss, which quantifies the error of
a model in performing these tasks. Since our goal with the ML-EHM
is to learn QM-based molecular physics, we train it to reproduce
properties of DFT MO energies. We start by including an error term
corresponding to the MO energy spectrum. However, our reference
DFT data and the EHM model are defined over different basis sets.
To determine a matching between the two sets of MOs, we exam-
ine only the MOs surrounding the occupation threshold. We take X
occupied MOs and Y virtual MOs and order them by energy to com-
pute the square difference between the ML-EHM and DFT orbital
energies, EMO,

ΔEMO = ∑
LUMO+Y−1
χ=HOMO−X+1(E

DFT
χ − EML−EHM

χ )
2
, (10)

where index χ labels the MOs. However, such a loss term does not
fully constrain the ML-EHM model. The Hamiltonian may repro-
duce the eigen-spectrum of DFT without reproducing the distri-
bution of the electronic density over MOs. This is, particularly,
important for preserving the orbital identities when MO energies
cross depending on changes in molecular geometry. We address the
orbital density distribution by defining an orbital occupation fraction
for orbital χ on atom I,

Fχ,I =
Σμ∈{I}C2

χ,μ

ΣμC2
χ,μ

. (11)

The notation μ ∈ {I} denotes that the sum in the numerator runs
over all atomic orbitals associated with atom I; the sum in the
denominator runs over all atomic orbitals in the molecule. This
definition provides positive-definite atom-local charge densities for
each MO, which can be compared between basis sets of different
sizes. The sum-squared error of Fχ,I is the density error

Δ℘MO = ∑
Norb

χ ∑
Natom

I (FDFT
χ,I −FML−EHM

χ,I )
2
. (12)

The full loss function L is a combination of ΔEMO, Δ℘MO, and an L2
regularization penalty using importance factors λ,

L = λΔEMO × ΔEMO + λΔPMO × ΔPMO + λL2 ×LL2. (13)

The LL2 regularization penalizes large weight values and promotes
smoothness of the network. λ values were empirically chosen to be

λΔEMO = 1.0 and λΔEMO = 10−3, λL2 = 10−6. Interestingly, the inclusion
of the Δ℘MO term during training results in better minimization of
the ΔEMO term when compared to a model trained without Δ℘MO.
We take this as evidence that the inclusion of Δ℘MO successfully pro-
motes the construction of physically meaningful Hamiltonians that
correctly track the character of MOs.

F. ML-EHM training dataset
To train the HIP-NN model to predict the ML-EHM para-

meters, we use a small fraction of the ANI-1x dataset.37 The ANI-1x
dataset consists of small organic molecules at non-equilibrium con-
formations. The ANI-1x dataset was generated in an active learning
process with the ANI potential.7 The final dataset contains ∼5 × 106

DFT (wB97x/6-31G∗) calculations, each computed with a neutral
charge state and a singlet spin state. All QM calculations in this work
were performed with Gaussian 09.38 Molecules are obtained from
various sources, such as GDB-1139,40 and ChEMBL,41 and processed
with the RDKit software package.42 The details about the dataset can
be found in our previous publication.37

The HIP-NN model training was performed with all molecules
smaller than five heavy atoms. This was found to aid HIP-NN in pro-
ducing realistic parameters for the ML-EHM. In addition to these
molecules, a random sample of the remaining molecules with 18
atoms or fewer was added to the training set. The 18-atom cutoff was
used for training due to poor scaling of the training code to larger
system sizes: the overlap matrices are zero-padded to the largest pos-
sible Hamiltonian size. Three distinct models were trained, each to
a different number of occupied and virtual orbitals. The final size
of the training datasets and target orbitals is given in Sec. S1 of the
supplementary material.

III. RESULTS AND DISCUSSION
A. Test for dataset accuracy

Figure 3 compares the accuracy of three ML-EHM models with
different orbital configurations from Table I. The comparison is per-
formed by predicting on the remainder of ANI-1x (described in
Sec. II F) with 20 atoms or fewer. The size limit was imposed so
that we would have a measure of how well the models perform on
molecules similar to those in the training set. Obviously, the (4 × 0)
model has the best predictive performance on the remaining ANI-1x
data. It can predict the energies of the four highest occupied orbitals
in the training set with a MAD of 0.092 eV. In contrast, the (4 × 0)
model is completely unable to predict the bandgap of organic
molecules, which is anticipated since it was never trained to virtual
orbitals. (4 × 2) and (2 × 2) models trained to virtual orbitals show a
lower accuracy when predicting orbital energies. This is likely due to
the ML-EHM form lacking explicit Coulomb and exchange terms,
making the model insufficiently complex to describe both the occu-
pied and virtual MOs from DFT (we recall that the bandgap has a
very steep dependence on the fraction of the orbital exchange in the
hybrid DFT models43,44). Despite this, the (4 × 2) model can predict
bandgaps with an accuracy of about 0.2 eV.

B. ML-EHM validation on COMP-6 dataset
Figure 4 shows our ML-EHM model’s performance on a por-

tion of the COMP6 benchmark37 to validate the ML-EHM ability
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FIG. 3. Predictions of ML-EHM on the remaining ANI-1x datapoints that were not included in the training sets. This includes some large molecules than were intentionally
left out of training. While the (4 × 0) model makes an excellent occupied orbital prediction, it is unable to predict the bandgaps. Other models trained to virtual orbitals give
worse predictions on orbital energies but are able to make quantitative predictions on the bandgap.

to extend its predictions to molecular systems larger than those in
the training dataset. It consists of three separate benchmarks. The
GDB benchmarks (i.e., GDB7-8 and GDB10-13) are randomly sub-
sampled molecules from the GDB-13 database. Each GDB subset
contains a few thousand of different molecules. The s66 × 8 bench-
mark45 is a well-known benchmark for testing the intermolecular
interaction for dimer molecules. All test sets are described in more
detail in the previous work.37 Naturally, all comparisons of ML-
EHM were done to the same reference DFT level (wB97x/6-31G∗).

Generally, the performance of ML-EHM is quite good. The MO
energies’ predictions on the subsets that are most similar to ANI-1x,

TABLE I. ML-EHM models and training datasets explored in this paper.

Model Training orbitals Molecules in training set

(4 × 2) HOMO−3 to LUMO+1 172 588
(4 × 0) HOMO−3 to HOMO 210 933
(2 × 2) HOMO−1 to LUMO+1 210 652

GDB 7–9 and GDB 10–13, by (4 × 0) have mean absolute devia-
tions of 0.089 and 0.13 eV, respectively [Figs. 4(a)–4(f)]. The per-
formance degrades by roughly a factor of 2 when applying the
model to the larger dimer systems found in s66 × 8 [Figs. 4(g)–4(i)].
The molecules generating the highest errors in the s66 × 8
dataset contain ring structures (see Sec. S2 of the supplementary
material).

Figure 5 shows histograms of the {K‡, αμμ} learnable parame-
ters, generated by HIP-NN when applied to the COMP-6 dataset.
These are the αμμ values for s-and p-orbitals and K‡ values fed into
the ML-EHM models. The histograms make it clear that the (4 × 0)
model has the clearest distinction between atom types, with each
atom type in Fig. 5(b) having a distinct distribution. The incor-
poration of virtual orbitals into the training procedure makes the
distributions of parameter predictions indistinct, with all atom types
having s-orbital energies over roughly the same range [Fig. 5(c)].
One interesting point is an agreement between the ML-EHM and
the original EHM in terms of prediction of the hydrogen s-orbital
energy. In EHM, this parameter was taken from the ionization
energy of a hydrogen atom, which is 13.6 eV. By training the HIP-
NN on molecular orbital energies, the (4 × 0) network produces
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FIG. 4. Prediction of the EHM-ML models on the COMP-6 test set. The portion tested consists of three separate benchmarks: GDB 7–9 [(a)–(c)], GDB 10–13 [(d)–(f)], and
s66 × 8 [(g)–(i)]. Generally, the models perform well on all panels [(a)–(i)].

an average hydrogen s-orbital energy of 12.5 eV, close to the EHM
value. Moreover, the 12.5 eV value is consistent with more sophisti-
cated semiempirical methods, such as MNDO46 (11.9 eV) and OMx
models47 (∼12.5 eV). The proton in molecules typically comes out
in semiempirical methods as a weaker electron acceptor than in vac-
uum, rationalizing the difference with 13.6 eV of a hydrogen atom.
Another observation is that the sequence of orbital energies (O < N
<C <H) is in line with the expected series from a simple electrostatic
argument, showing that the oxygen S-orbital is lower in energy than
the S-orbital of hydrogen. Additionally, the HIP-NN reproduces a
bifurcated distribution of the K‡ off-diagonal matrix elements with
an average value of 1.54, which matches the EHM parameterization
of 1.75. While there are two maxima in the distribution of predicted
K‡ values, these maxima do not necessarily correlate with atom types
in the pair to which the K‡ value is assigned. However, it probably
points to the sp2 and sp3 C atom hybridization in the molecules of
the training dataset. The appearance of these two maxima requires
further investigation.

IV. REPRESENTATIVE MOLECULAR CASE STUDIES

A. Molecular orbital view of C–H stretching
in methane

The orbital shapes and energies of valence electrons are cru-
cial to obtaining a wide variety of quantum mechanical proper-
ties. Examples of these applications are Fukui’s frontier electron
orbital theory of reactivity48 and the Woodward–Hoffmann rules,49

where information on orbital distributions and phase is required
(not just total electron density). Effective Hamiltonian models that
correctly describe the behavior of valence electrons are necessary
for such analyses. In this section, we examine ML-EHM accuracy
in describing the orbital structure of a C–H stretch of a methane
molecule.

The (4 × 0) model was employed to find the orbital energies
and wave functions of the four highest energy molecular orbitals
of methane when one of hydrogen is stretched out from carbon
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FIG. 5. Histograms of ML-EHM learnable parameters over the COMP-6 test dataset. The hydrogen s-orbital energy [(a)–(c)] is in remarkable agreement with the EHM
assignment of −13.6 eV. Additionally, although the off diagonal factor is bifurcated in the ML-EHM [(g)–(i)], its average value is in agreement with the EHM empirical K‡

value of 1.75.

[Fig. 6(a)]. In testing, we found that only (4 × 0) was able to cap-
ture the orbital physics detailed below. This is likely due to the EHM
Hamiltonian’s simplicity: it is unable to make simultaneous quanti-
tative predictions on occupied and virtual orbitals. Figure 6(a) dis-
plays the ML-EHM predicted αμμ on-site energies along with the
empirical parameterization used by Pople and Segal.30 In the orig-
inal approach, αμμ are the constant values of the valence state IEs
for the appropriate isolated atoms, whereas ML-EHM produces a
smooth function for αμμ depending on the bond length. As shown in
Fig. 6(a), the dissociating hydrogen (Ha) 1S orbital energy increases

as the hydrogen distances from the carbon. As a result of increas-
ing site energy, one would expect the hydrogen to decouple from the
lowest energy molecular orbitals, reflecting a dissociation of bond-
ing between the hydrogen and the CH3 fragment. Simultaneously,
the carbon 2S orbital energy decreases by a similar amount, while the
carbon 2P orbital energies remain approximately constant. Near the
equilibrium bond distance (∼1.09 Å for our reference DFT), all on-
site energies are not variable. This provides a strong evidence that
the empirical parameterization of EHM is valid at the equilibrium
geometries.
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FIG. 6. ML-EHM αμμ energies and corresponding Pople and Segal αμμ values shown in black (a) and MO energies (b) as a function of hydrogen extraction coordinate.
The partial MO diagram (c) illustrates how the frontier MO (FMO) changes in the process of C–Ha bond stretching. The two gray areas on the diagrams indicate the FMO
crossings between HOMO−2 and HOMO−1 and HOMO and HOMO−1. [(d)–(f)] The FMO occupation fractions for Ha and Hb.

In Fig. 6, we show that the dynamic ML-EHM parameters
correctly reproduce the electronic structure changes witnessed in
the source DFT throughout the hydrogen abstraction coordinate.
This is shown through MO energies and charge occupation via
the orbital occupation fractions, Fχ,I [Eq. (11)]. Figure 6(b) indi-
cates that in contrast to EHM, both DFT and ML-EHM produce
two orbital crossings throughout the methane dissociation coor-
dinate: one at ≈0.95 Å between HOMO−2 and HOMO−1 and
one at ≈1.1 Å between HOMO−1 and HOMO. By plotting the
DFT orbitals [Fig. 6(c)], it becomes clear that HOMO−2 trans-
forms to the HOMO. Meanwhile, the HOMO and HOMO−1 are
shifted downward but maintain their order as the C–Ha bond
stretches.

The correspondence between orbital energy and orbital char-
acter as determined by Fχ,I [Eq. (11)] is of particular interest. As
HOMO−2 and HOMO−1 approach in energy near a C–Ha sepa-
ration of ≈0.95 Å, the character of these two orbitals switches as
indicated in Figs. 6(d) and 6(e). HOMO−1 Ha Fχ,I starts near zero
and transitions to 0.4 e−. The opposite is observed for HOMO−2
Ha Fχ,I , indicating that around 0.95 Å, these two orbitals switch
character. At 1.1 Å, another closer crossing between the HOMO
and HOMO−1 appears. Correspondingly, a more abrupt exchange
of orbital character, as indicated by Ha Fχ,I , is shown in Figs. 6(e)
and 6(f) near 1.1 Å. Both the gradual and abrupt crossings at
≈0.95 and at ≈1.1 Å, respectively, are captured by the ML-EHM
without discontinuous changes in EHM parameters, as shown in
Figs. 6(a) and 6(b). This example illustrates how the NN and EHM
parts of ML-EHM can harmonize to capture the orbital physics
concomitant to large geometry changes. The EHM can capture

rapid changes in orbital physics using diagonalization, and the NN
parameters {K‡, αμμ} provide smooth modulation of the underlying
Hamiltonian.

B. Internal rotation in conjugated systems
The key success of the EHM model was its predictions for the

behavior of conjugated π-systems in electrocyclic reactions. This
became the theoretical background for the Woodward–Hoffman
rules and the subject of the 1981 Nobel Prize in Chemistry. While
limitations in the training dataset preclude our model’s application
to reactive systems, it can be applied to bond rotations in conjugated
π-systems. To illustrate this, we use ML-EHM to study the central
bond rotation in 1,3-butadiene and 2-aza-1,3-butadiene. While these
two systems have the same number of electrons, aza-butadiene has
one fewer core σ-orbital. Thus, the LUMO in butadiene becomes the
HOMO in aza-butadiene, with a similar shift happening between
all valence MOs. This can be clearly seen when examining the
π-system in Fig. 7. We have already checked that a change in ML-
EHM energy of FMO reflects certain changes in calculated orbital
occupation fractions of the corresponding AOs. We now consider
the internal rotation in conjugated systems to check that such an
ML-EHM FMO energy change agrees directly with the structural
changes in the molecular system.

1. Orbital correlation between
s-trans/s-cis-1,3-butadiene

We consider the s-cis-1,3-butadiene and cis-2-aza-1,3-
butadiene conformers with a torsion angle Θ rotation from 180○ to
0○. The ground electronic states of s-trans- and s-cis-1,3-butadiene
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FIG. 7. ML-EHM FMO energies (left) and
partial FMO diagram (right), which illus-
trates the orbital changes in the pro-
cess of internal rotation around the cen-
tral single bond for 1,3-butadiene (a) and
2-aza-1,3-butadiene (b).

and 2-aza-1,3-butadiene conformers have closed shells with 15
doubly occupied orbitals. There are four core orbitals and four inner
valence orbitals; the remaining seven orbitals are outer valence
orbitals. Here, we apply our (4 × 0) ML-EHM to predict the behav-
ior of the four highest lying occupied orbitals in both butadiene
and aza-butadiene as they undergo a torsional bond rotation. In
cis-butadiene, the four highest orbitals have the following symmetry:

X1A1 : (6b2)(7a1)(1b1)(1a2).

In trans-butadiene, the symmetries of the highest orbitals are as
follows:

X1Ag : (6bu)(7ag)(1au)(1bg).

Torsional rotation causes the butadiene to lose a mirror plane and
gain an inversion center, causing the point group to change from
C2h to C2v. Additionally, when the bond rotates, orbitals that were
symmetric with respect to the mirror plane transform into orbitals
that are symmetric under inversion. The same holds true for orbitals
that are anti-symmetric under reflection and inversion. This sim-
ple symmetry argument predicts a crossing between the HOMO and
HOMO−1 in butadiene as the molecule undergoes a torsional rota-
tion. As seen in Fig. 7, both DFT and ML-EHM find that the HOMO
and HOMO−1 orbitals cross when butadiene undergoes a torsional

rotation, and the ML-EHM model remains in a quantitative agree-
ment with the energy levels of DFT. For an analysis of the αμμ orbital
parameters constructed by HIP-NN, which change very little over
the course of the rotation, see Sec. S3 of the supplementary material.

A very similar event happens in aza-butadiene: here, HOMO−1
and HOMO−2 are anticipated to cross. Generally, aza-butadiene
is a much more complicated case and does not lend itself to a
simple molecular orbital description as was done with butadiene.50

Nonetheless, the ML-EHM remains in a quantitative agreement with
the underlying DFT throughout the torsional rotation in contrast to
EHM results.

V. CONCLUSIONS
Machine learning is rapidly proving to be a powerful tool for

computational chemists. In the past, accurate QM calculations were
prohibitively expensive, preventing their application to many inter-
esting problems. By training an ML model to replicate these results,
it is now possible to compute high-level QM properties at a rate of
microseconds per atom. However, the results produced from pure
ML models are still difficult to interpret. By interfacing ML with
a physics-based effective Hamiltonian model (EHM in this work)
for electrons in molecules, we can retain the accuracy of ML, the
interpretability of ab initio calculations, and the speed of a reduced
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dimensionality description of quantum mechanics. Notably, the
EHM used here for a molecular case is a representative of a gen-
eral class of tight-binding Hamiltonians broadly exploited for both
solids and finite systems. A modified HIP-NN model naturally trains
to on-site energies and hopping integrals in the context of any tight-
binding model, such as EHM. This training is dynamically parame-
terizing the EHM Hamiltonian: its parameters are varying smoothly
as the molecule changes its conformation and passes through regions
of orbital crossings.

Importantly, mapping the original quantum mechanical prob-
lem to a simple model Hamiltonian provides a viable approach to
address the spatial locality challenge for conventional ML schemes
targeting individual molecular properties. The latter frequently have
an empirically determined spatial cutoff radius of 3–6 Å7,13,51–53

and may further utilize physics-based models (e.g., electrostatics) to
extend beyond this range.54,55 In contrast, such interactions are natu-
rally introduced through physically transparent terms of the reduced
Hamiltonian form.

The ML-EHM provides many surprising and promising results.
First, the ML model recovered many of the original parameters
used in the EHM. Examples of this include the hydrogen s-orbital
energy, as well as the empirical K‡ parameter used to modify the
off-diagonal elements of the EHM Hamiltonian. Additionally, the
ML-EHM recovered many of the orbital signatures seen in both
the h-vibration on methane and the bond rotation on butadiene
and aza-butadiene. The ML-EHM model’s largest shortcoming is
the lack of explicit Coulomb and exchange terms in the under-
lying Hamiltonian. Neglecting these terms significantly simplifies
training as electron density does not need to be iterated to achieve
self-consistency (i.e., mean field convergence being the case for
Hartree–Fock or DFT approaches). However, their absence also
implies that the ML-EHM’s total energy is simply a sum of orbital
energies. This is not true for the reference DFT method, which pre-
vented multi-objective training to both total molecular energy and
valence orbital energy.

Future work should focus on interfacing ML models with more
complex effective Hamiltonian representations of QM and target-
ing more QM properties in multi-objective training. These semiem-
pirical effective Hamiltonian models (such as AM1,56 PM series,57

OMx47, and others58) will simultaneously allow for training to the
total molecular energy, valence orbital energy, and molecular orbital
density. These more complicated models will also facilitate accurate
training to valence orbitals, which is not fully accomplished here
without partly destroying the physics encoded in the EHM model.
This all points to an auspicious future for ML enhanced physics
models in quantum chemistry.
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45J. Řezáč, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 3466 (2011).
46M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).
47P. O. Dral, X. Wu, L. Spörkel, A. Koslowski, W. Weber, R. Steiger, M. Scholten,
and W. Thiel, J. Chem. Theory Comput. 12, 1082 (2016).
48K. Fukui, in Quantum Chemistry, edited by P. O. Löwdin, O. Goscinski, and
J.-L. Calais (Wiley, 1978), p. 277, a scientific melting pot: a symposium sponsored
by the Quantum Chemistry Group to mark the 500th anniversary of the University
of Uppsala, held 31 August through 4 September 1977.
49R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry
(Verlag Chemie and Academic Press, Weinheim, NY, 1971).
50Z. Neiman, J. Chem. Soc., Perkin Trans. 2 2(12), 1746 (1972).
51J. Behler, J. Chem. Phys. 134, 074106 (2011).
52R. Zubatyuk, J. S. Smith, J. Leszczynski, and O. Isayev, Sci. Adv. 5, eaav6490
(2019).
53K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller,
J. Chem. Phys. 148, 241722 (2018).
54O. T. Unke and M. Meuwly, J. Chem. Theory Comput. 15, 3678 (2019).
55T. Morawietz, V. Sharma, and J. Behler, J. Chem. Phys. 136, 064103 (2012).
56M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem.
Soc. 107, 3902 (1985).
57J. J. P. Stewart, Encyclopedia of Computational Chemistry (Wiley, 1998).
58T. Husch, A. C. Vaucher, and M. Reiher, Int. J. Quantum Chem. 118, e25799
(2018).
59P. A. M. Dirac, Proc. R. Soc. London, Ser. A 123, 714 (1929).

J. Chem. Phys. 154, 244108 (2021); doi: 10.1063/5.0052857 154, 244108-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/acs.jctc.8b00873
https://doi.org/10.1021/acs.jctc.8b00873
https://doi.org/10.1063/1.1734456
https://doi.org/10.1103/revmodphys.60.601
https://doi.org/10.1063/1.1700580
https://doi.org/10.1016/s0031-8914(34)90011-2
https://doi.org/10.1021/ja00863a008
https://doi.org/10.1063/1.1701476
https://doi.org/10.1103/physrevb.61.7965
https://doi.org/10.1021/ja00480a005
https://doi.org/10.1021/ja00480a005
https://doi.org/10.1063/1.2956489
https://doi.org/10.1021/acs.jctc.8b00524
https://doi.org/10.1021/acs.jpclett.8b01939
https://doi.org/10.1063/5.0016011
https://doi.org/10.1063/1.5023802
https://doi.org/10.1021/ci600423u
https://doi.org/10.1002/anie.200462457
https://doi.org/10.1093/nar/gkt1031
http://www.Rdkit.Org
https://doi.org/10.1021/ct4009975
https://doi.org/10.1021/jz3021292
https://doi.org/10.1021/ct200523a
https://doi.org/10.1021/ja00457a004
https://doi.org/10.1021/acs.jctc.5b01046
https://doi.org/10.1039/p29720001746
https://doi.org/10.1063/1.3553717
https://doi.org/10.1126/sciadv.aav6490
https://doi.org/10.1063/1.5019779
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1063/1.3682557
https://doi.org/10.1021/ja00299a024
https://doi.org/10.1021/ja00299a024
https://doi.org/10.1002/qua.25799
https://doi.org/10.1098/rspa.1929.0094

