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ABSTRACT: An extended Lagrangian framework for excited
state molecular dynamics (XL-ESMD) using time-dependent
self-consistent field theory is proposed. The formulation is a
generalization of the extended Lagrangian formulations for
ground state Born—Oppenheimer molecular dynamics [Phys.
Rev. Lett. 2008 100, 123004]. The theory is implemented,
demonstrated, and evaluated using a time-dependent semi-
empirical model, though it should be generally applicable to ab
initio theory. The simulations show enhanced energy stability and
a significantly reduced computational cost associated with the
iterative solutions of both the ground state and the electronically
excited states. Relaxed convergence criteria can therefore be used
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both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase
approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically
efficient excited state molecular dynamics for such methods as time-dependent Hartree—Fock (TD-HF), Configuration
Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

1. INTRODUCTION

Quantum based molecular dynamics (QMD) simulations,
where nuclear trajectories are propagated classically using
forces derived from quantum mechanical descriptions of the
electronic structure, is at the forefront of many areas of
research.'™ These dynamics can be used to predict a wide
range of the properties of matter.'’”'> QMD provides a more
general approach compared to classical force-field methods and
can handle a wider range of phenomena including, for example,
electronic excitations controlling photovoltaic and light
emitting processes, quantum size effects in nanodevices, spin-
polarization in magnetic materials, quantum response proper-
ties such as the conductivity or the polarizability, thermal
excitations in warm dense matter, as well as bond formation
and dissociation with the associated charge transfer in chemical
reactions. The major dissadvantage with QMD is the high
computational cost. Ground state Born—Oppenheimer simu-
lations using self-consistent field (SCF) theory, for example,
Hartree—Fock or density functional theory (DFT), the main
cost is associated with the nonlinear, iterative solution of the
electronic ground state, which is required prior to each force
evaluation. Unless careful convergence of the electronic ground
state is reached, the forces are not conservative and the
electronic degrees of freedom act like a heat sink or heat
source'*'° rendering an unphysical dynamics. This stability
problem is particulary problematic when the initial guess to the
iterative SCF optimization is given by an extrapolation of the
ground state solutions from previous time steps, which is
commonly used to reduce the computational overhead. Several
techniques have been proposed to overcome these short-
comings. Car—Parrinello molecular dynamics (CPMD) was the
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first approach to enable practical QMD simulations for a broad
range of problems, both in chemistry and materials science, and
it set the stage for a whole generation of QMD
simulations.'*~"*">7** While CPMD methods avoid the costly
energy miminimization associated with self-consistent first-
principles methods, it often requires shorter integration time
steps and tuning of a fictitious electron mass parameter which is
limited by the electronic gap.'” Recently, a new and different
form of extended Lagrangian QMD was proposed: extended
Lagrangian Born—Oppenheimer molecular dynamics (XL-
BOMD).”® In contrast to CPMD, XL-BOMD avoids the
limitation in electronic integration time step and does not
require tuning of a fictitious electron mass parameter, and gives
a higher order interpretation of the exact Born—Oppenheimer
potential energy surface.”®

Nonequilibrium dynamics of molecular and solid state
materials frequently encompass electronically excited states.
While excited state manifolds are usually dense and dynamics
involves complex nonadiabatic processes, practical approaches
such as mean-field (Erhenfest) dynamics and surface hopping
algorithms rely on piece-wise propagation of a system along
potential energy surfaces.”” Subsequently, extending the XL-
BOMD approach®”° to the potential energy surface of the
excited states instead of the ground state is a challenging
methodological problem with important practical implications.
There are a few examples of CPMD-based formulations of
excited state molecular dynamics (ESMD) found in the
literature,”*™>° where it is applied to excited electronic states
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within a framework of a A-SCF method (ie., by seeking the
excited state solutions orthogonal to the ground state). In
addition to the A-SCF techniques, a more general and accurate
approach for computing the electronic excited state is the
family of time-dependent self-consistent field (TD-SCF)
methods® ~*° These methods range from time-dependent
Hartree—Fock (TD-HF) theory’* to time-dependent density
functional theory (TD-DFT).*>*” While the A-SCF techniques
are adequate for low-lying excited states, the TD-SCF
methodology often provides more accurate description of the
excited state energies and forces as well as simultaneous
calculation of multiple excited states.

The working equation of TD-SCF methods in the frequency
domain is the random-phase approximation (RPA) eigenvalue
equation.*® This formally involves a diagonalization of a tetradic
matrix of dimension N* by N* where N is the number of basis
functions. The RPA matrix is formed from the results of the
ground state SCF solution (i.e., the reference state). The formal
numerical cost of diagonalization of the RPA matrix scales as

O(N°®) because of the RPA matrix dimensions. However,
effective Krylov subspace algorithms and iterative diagonaliza-
tion techniques have been developed (e.g, the Lanczos and
Davidson algorithm).”®™* These approaches are able to
efficiently calculate a portion of the eigenspectrum of the
RPA matrix. Typically, the low-energy part of the eigenspec-
trum addresses electronic excitation of practical interest such as
relevant to optical spectroscopy. Such diagonalizers are
common in most modern quantum-chemical codes and allow
efficient computation of excited state properties for molecular
systems, generally reaching O(N*) — O(N*) complexity.

With the conventional numerical algorithms developed for
ESMD using TD-SCF methods (e.g,, refs 27 and 46), the same
stability problem as outlined above for ground state Born—
Oppenheimer molecular dynamics occurs for the calculation of
both the electronic ground state and excited state transitions. In
this contribution we generalize the XL-BOMD approach for the
ground state’”° to a formalism for extended Lagrangian
excited state molecular dynamics (XL-ESMD). We treat the
ESMD as a BOMD and subsequently, the basic ideas behind
the XL-BOMD formalism can be applied also to ESMD. The
numerical cost of XL-ESMD simulations is reduced in both the
ground and the excited state calculations because the level of
convergence required to maintain stable dynamics is signifi-
cantly relaxed.

The paper is outlined as follows: In section 2, we describe the
basic theory of XL-ESMD. In section 3, we describe our specific
computational methods used for testing XL-ESMD. In section
4, we present simulation results for XL-BOMD, XL-ESMD, and
a study of several molecular examples to test simulation
stability. Finally, in section 5 we present our conclusions.

2. THEORY

In ab initio Born—Oppenheimer molecular dynamics (BOMD)
for the ground state, the Lagrangian is given by

L9R, R) = = ¥ MR2 - U[R; D]
25 (1)

where U is the ground state potential energy, including
nuclear—nuclear repulsion terms, calculated at the electronic
ground state that is given by the self-consistent ground state
density matrix, D. The dot denotes time derivatives, R = {R,}
are the atomic coordinates, and M, are the atomic masses.
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For ESMD, we write the corresponding Lagranigan as
ES . 1 . 2
LR, R) = — ) MR} = UIR; D] = Q[R; D, ¢]
k

(2
where Q is the transition energy between ground and excited
states and & is the corresponding transition density matrix.”'

Following the original framework of XL-BOMD,*® we can
formulate an XL-ESMD with the extended Lagrangian as

LR, R, P, P, ¢, 0)
2

o - Py

K .
= LR, R) + TgTr[Pz] -

2

ﬂes 22 'ueswes 2
+ By - B - o) (3)
where the density matrix P occurs as an extended dynamical
variable that oscillates in a harmonic well centered around D. {
is the corresponding dynamical variable for the transition
density matrix, which is driven by a harmonic oscillator
centered around the optimized transition density matrix £. Here
Hgy Hey Wgy and @ are the ficticious electronic mass and
frequency parameters of the extended harmonic oscillators for
the ground state (gs) and the excited state (es).

The equations of motion are given by the Euler—Lagrange
equations,

i aLXES 3 aLXES
dt\ orR R (4a)
i aLXES 3 aLXES
dt\ op oP (4b)
i a -EXES 3 a -EXES
dt aé 7 (4c)

In the limit pg — 0 and pe, — 0,25264748

equations of motion are

the Euler—Lagrange

M, = OU[R; D] _ 0Q[R; D, &]

oR, OR;, (5a)
B=wlD-P) (sb)
{=0lE-0) (5e)

The equations of motion above are decoupled. Therefore, any
possible dependence between D and P or & and { is eliminated.
Alternatively, for ground state XL-BOMD it is possible to
derive the corresponding equations of motion in a classical
adiabatic limit, where oscillator frequency @, — oo, which
allows a direct coupling between D and P, that is, where D =
D[P].***" This refined formulation of XL-BOMD requires a
more careful formulation of the potential energy surface,
U[R;D], and the corresponding force evaluations,” but it has
the advantage that the nonlinear iterative SCF optimization of
the ground state density matrix can be avoided. We have not
been able to find the corresponding generalization for the
transition density matrix. However, we will occasionally take
advantage of this “0-SCF” formulation for the ground state
density matrix, using only a single calculation of D directly from
P, even if it may not be formally allowed because of density
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matrix D occurring in the second force term for the excitation
on the right-hand side of eq Sa.

The equations of motion above can in principle be integrated
with any appropriate geometric or time-reversible scheme. For
the equation of motion, eq Sa, for the nuclear degrees of
freedom, we will use the standard leapfrog velocity Verlet
scheme. The two equations for the electronic degrees of
freedom, eqs Sb and Sc, can in principle be integrated with the
same method. However, to avoid accumulation of numerical
noise in a perfectly time-reversible scheme, a small amount of
dissipation can be introduced through a modified Verlet
integration scheme, ™! where

P(t + 6t) = 2P(t) — P(t — 6t) + 6t°B(t)

Kmax
+a Z o P(t — két)

k=0 (6)
C(t+ 6t) = 20(t) — C(t — 6t) + 6t7%E(¢)
Kmax
+a ) ot —kst)
k=0 (7)

for some optimized set of coefficients, & and {c;} (see ref 49 for
explicit derivation). After each integration step, P(t + 6t) is used
as the initial guess in the iterative SCF optimization of the
ground state density matrix D and {(t + t) is the initial guess
in an iterative subspace diagonalization of the RPA matrix used
to calculate the transition density matrix £. The integrated
initial guess followed by an iterative calculation can schemati-

cally be represented by

D(t + 6t) = SCF[R(t + 6t), P(t + 6t)] (8)
for D and
E(t+ 6t) = RPA[R(t + 6t), D(t + 6t), C(t+ 6t)]  (9)

for {. Here SCF[R, X] is the iterative ground state SCF
optimization (e.g, for Hartree—Fock or DFT) with the initial
guess X for the ground state density matrix D, which is given as
a solution to the coupled nonlinear eigenvalue problem

E(D)Ig) = €lp) (10)
D= ) Ip)gl
i€occ (11)

The summation is over the occupied (occ) states. Here F(D)
runs the Fockian or Kohn—Sham Hamiltonian calculated for
the density matrix D. The function RPA[R, D, Y] corre-
sponds to an iterative approach to the RPA matrix
diagonalization using Y as the initial guess for the transition
density matrix, which solves the time-dependent eigenvalue
equation in the linear response formulation,””

LIg) = [F(D), &] + [V(&), D] = QI¢) (12)

Here V(-) corresponds to the coulomb-exchange matrix and
[-,-] denotes the standard Fermionic commutator. L is the
Liouville space RPA superoperator. Greater technical detail of
ESMD and on the iterative solution of the RPA eigenvalue
problem and the force evaluations, can be found elsewhere.””>’
It is important to note that the TD-SCF method of calculating
excitations is based on a single Slater determinant reference, so
that it is not equipped for calculations involving crossing of the
excited states with the ground state. Therefore, this formulation
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is intended for excited state dynamics of semiconductor-like
systems where potential energy surfaces of excited state are well
separated from that of the ground state. Moreover, here we are
not considering ill-behaved TD-SCF cases such as those
relevant to so-called triplet instabilities in TDHF and when
density functional includes a large hybrid component.>
Further, one must consider nonadiabatic excited state
molecular dynamics when excited states become close in
energy. This is a topic of further study. The presented
formulation is only applicable to excited state dynamics on well
isolated excited state potential energy surfaces.

P(t + &t) and {(t + 6t) provide accurate approximations to
D(t + 6t) and &(t + St) with a leading error that is only of

second-order, O((Stz), in the integration time step, ot.
Moreover, since P(t) and {(t) appear as dynamical variables,
they can, at least in principle, be integrated with perfect time-
reversibility. This significantly reduces the number of iterations
required to solve for D and £ in each time step, while keeping
the constant of motion stable. In practice, however, the
integration scheme above, eqs 6 and 7, is not perfectly time-
reversible. The last term of the modified Verlet integration
introduces a broken time reversibility, but only with a small
prefactor a and only to a higher-order in the integration time
step Ot. In ground state Born—Oppenheimer molecular
dynamics simulation, this dissipative term, which avoids an
accumulation of numerical noise, typically has no significant
effect.* ™! As we will see here, the same holds also for ESMD
simulations.

3. COMPUTATIONAL METHODS

We have implemented the XL-ESMD formalism in the
nonadiabatic excited state molecular dynamics (NEXMD)
package.” This is a package for adiabatic and nonadiabatic
ESMD, utilizing a semiempirical Hamiltonian approximation to
perform TD-SCF calculations.”® The semiempirical Austin
Model 1 (AM1) is used in the present study. For the excited
state electronic structure calculation, we use the RPA
approximation and calculate the first eigenvector of the RPA
matrix using the Davidson algorithm.** A velocity Verlet
algorithm is further used for integrating the Newtonian
equations of motion with forces calculated from the electronic
structure with a time step of 025 fs in all simulations
presented.”

The majority of test simulations are performed for
acetaldehyde (OC,H,). The initial molecular configurations
are taken from the optimized ground state geometry. Different
initial conditions are used for ground state dynamics and
excited state dynamics. For ground state, we perturb the
optimized molecular geometry to produce kinetic energy
fluctuations corresponding to a temperature of 300 K on the
ground state potential energy surface. For excited state
simulations, we use the initial molecular geometry correspond-
ing to the unperturbed minimum energy structure of the
ground state potential energy surface. The resulting kinetic
energy fluctuations correspond to an approximate temperature
of 800 K. These simulations are intended to analyze the
application of the extended Lagrangian to ESMD and not to
accurately simulate the realistic photoexcited dynamics of
reference molecules. Notably, these are not canonical finite
temperature dynamics simulations, although the implementa-
tion of a thermostat is within the capability of our XL-ESMD
method.”’
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Calculations are performed for several scenarios to examine
the effectiveness XL-ESMD. Highly converged conventional
BOMD and ESMD calculations are performed with con-
vergence parameter SE ;= 107° eV for the ground state energy
(defined as a difference between energies of subsequent SCF
iterations) and an unlimited number of SCF cycles to reach the
above convergence (dubbed as N, = o0), and with
convergence parameter y = 107'° eV for excited states (defined
as a difference between transition energies for the first excited
state between subsequent Davidson’s iterations. The average
number of iterations required to reach these convergence
criteria from a S ps simulation is 15 (SCF cycles) and 10
(Davidson iterations). We subsequently observe a reduction of
the average numbers of SCF cycles to 2 using XL-ESMD and
the number of Davidson iterations to 2 with XL-ESMD using y
= 107% Overall these numbers are not generally meaningful
since they depend on a specific implementation of the above
algorithms. However, they are used here as an indicator of the
relative calculation cost. Unless otherwise indicated, the XL-
ESMD calculation of & with initial guess { is performed with y =
10™* eV and D is calculated starting with initial guess P using 2
SCF iterations. The average number of Davidson iterations for
this XL-ESMD simulation is 2. For Ny = 0, the appropriate
energy gradient is calculated as detailed elsewhere."” _8 All
calculations were carried out with the NEXMD package.”

4. RESULTS AND DISCUSSION

We begin our analysis of the stability of the XL-ESMD
framework by first examining a ground state trajectory using the
XL-BOMD formalism wherein only one dynamical variable is
used. Then, we examine XL-ESMD trajectories using two
dynamical variables and compare cases for which the total
energy drifts substantially. Finally, we explore the stability of
XL-ESMD simulations with varying convergence criterion for
each dynamical variable.

4.1. Ground-State Molecular Dynamics. Our analysis of
ground-state simulations is important to verify the implemen-
tation of the XL-BOMD formalism and to identify the trends
for a given molecular example. It is also the first example of XL-
BOMD applied to molecular dynamics using Hartree—Fock-
based semiempirical electronic structure methods. We perform
calculations with a varied number of SCF iterations and plot
both conventional BOMD and XL-BOMD total energies as a
function of time in Figure 1. BOMD clearly produces energy
drift in realistic simulation time scales, on the order of 0.01
meV/atom/ps, even with a tightly converged SCF cycle
(compare XL-BOMD N, = 0 and N, = 2 with BOMD N,
= 0). In contrast, XL-BOMD stabilizes the total energy,
producing a negligible energy drift, thus respecting energy-
conserved dynamics. Simulations are stable even when the SCF
cycles are eliminated from the ground state calculation in the
implementation of XL-BOMD. With the ground state
implementation verified, we now move to exploring XL-ESMD.

4.2. Excited State Molecular Dynamics. In ESMD, the
transition density is calculated by a Davidson eigensolver which
determines the first M eigenvectors of the RPA matrix (the
transition densities). In this study, we perform simulations on
only the first excited state such that M = 1. As a reference,
Figure 2 shows the total energy fluctuations of a conventional
ESMD simulations with a tight convergence criteria. Here
energy conservation is respected with an accuracy within 0.1
meV/atom on time scales up to 20 ps. With the convergence
threshold relaxed in XL-ESMD calculations, the drift is fully
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Figure 1. Total energy fluctuations during dynamics on the ground
electronic state potential energy surface of acetaldehyde at T = 300 K.
BOMD are performed using conventional SCF calculations converged
to 107 eV (denoted with N,; = 00). Notably, a conventional BOMD
calculation with N = 2 diverges more rapidly than can be displayed
on this plot. XL-BOMD is performed using 0 or 2 SCF cycles. 0-SCF
XL-BOMD demonstrates much less divergence compared to a fully
conventional BOMD calculation.
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Figure 2. Total energy fluctuations during dynamics on the first
excited electronic state potential energy surface of acetaldehyde
beginning from the optimized ground state geometry. Simulations are
performed using ESMD with a fully converged SCF and RPA
calculation (y = 107'° eV) or using XL-ESMD with N, = 2 and y =
107* eV. A variety of three cases are also shown which do not perform
energy conserving excited state molecular dynamics at low
convergence thresholds/SCF cycles. Case 1 corresponds to ESMD
with Ny = 2 and y = 107* eV, ie, no XL propagation. Case 2 is XL
propagation of P (i.e., the ground state) at Ny¢ = 2 while using the
previous solution for & as the initial condition for solution of the RPA
equation iterated to y = 107* eV. Case 3 corresponds to no XL
propagation of P using N, = 2 but with XL propagation of { with y =
107" ev.

eliminated and we find that only some small fluctuations
remain. Since these fluctuations do not display an overall
systematic drift, we conclude that XL-ESMD is stable at this
restricted convergence threshold.

For comparison, we explore three cases for which the total
energy drifts rapidly. Case 1 shows the total energy fluctuations
with relaxed convergence criteria in the ESMD propagation. At
the convergence criteria used for XL-ESMD simulation, the
ESMD propagation displays a rapid total energy drift. In case 2,
the initial guess for the transition density matrix (i.e., the trial
Davidson’s eigenvector) is given by the solution from the
previous time step. This case is important because the reduced
number of Davidson iterations in XL-ESMD is also due to the
improved initial guess given by the XL-ESMD algorithm.
However, this case also produces a rapid systematic energy drift
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due to a broken time-reversibility. For completeness, we also
have case 3, where the ground state density initial guess is taken
from the solution at the previous time-step and the transition
density is dynamically propagated with reduced convergence. In
other words, the RPA calculation is performed using D from a
ground-state SCF optimization with Ny = 2, in which the
previous solution {(t) is used as an initial SCF guess. This
simulation also drifts rapidly. These results illustrate how XL-
ESMD requires both ground state and transition density
matrices to be dynamically propagated to produce stable and
consistent results.

The NEXMD package has been designed to simulate the
excited state dynamics of large organic molecules. We
performed dynamics on a test system of a large cyclic polyene,
C;oHs, for which the structure is shown in Figure 3. The total

Figure 3. Graphic of the molecular geometry of C;,H;, created using
the Avogadro package.”® Carbon atoms are shown in dark gray, while
hydrogen atoms are shown in light gray.

energy of trajectories performed for this system are shown in
Figure 4. As in the case of acetaldehyde, we demonstrate the
same three test cases with ESMD and XL-ESMD which do not
maintain an energy conserving dynamics. The dynamics in this
larger system are conserved, with roughly equal fluctuations in
the total energy observed between ESMD and XL-ESMD,
despite drastically reduced convergence criteria in the XL-
ESMD case. On average in this simulation, 3 cycles of the
Davidson’s algorithm are performed per time step for XL-
ESMD, while 14 are performed in the ESMD case with y =
107"°. Similarly, 2 SCF cycles are performed for the ground
state SCF calculation in XL-ESMD, while an average of 11 are
performed per time step in ESMD with SE,; = 107,

Figure 5 demonstrates that the resulting dynamics are
equivalent between ESMD and XL-ESMD by comparing the
change in the total potential energy (AU) over time. From this
figure, one can see that the difference in potential energy
between ESMD and XL-ESMD is within the fluctuations in
total energy conservation (as shown in Figure 4). This is
especially apparent on the femtosecond scale (see inset), where
the movement of the trajectory on the excited state potential
energy surface is seen to follow closely between ESMD and XL-
ESMD. Despite the fact that long-time dynamics will diverge
between any two trajectories due to small error in the initial

803

€
S
s :
> :
E :
ng — ESMD
q — XL-ESMD
—2 =—— Case 1 T
— Case?2
Case 3
—4 eee 0 i
i i i I
0 2 4 6 8 10

Time (ps)

Figure 4. Total energy fluctuations during dynamics on the first
excited electronic state potential energy surface of CsHj, beginning
from the optimized ground state geometry. Simulations are performed
using ESMD with a fully converged SCF and RPA calculation (y =
107" V) or using XL-ESMD with N,¢= 2 and y = 107* eV. A variety
of three cases are also shown which do not perform energy conserving
excited state molecular dynamics at low convergence thresholds/SCF
cycles. Case 1 corresponds to ESMD with N, = 2 and y = 107* eV,
ie., no XL propagation. Case 2 is XL propagation of P (i.e., the ground
state) at Ny = 2 while using the previous solution for £ as initial
condition for solution of the RPA equation iterated to y = 10™* eV.
Case 3 corresponds to no XL propagation of P using N = 2 but with
XL propagation of { with y = 107* V.

AU (meV/atom)

Time (ps)

Figure S. Total potential energy fluctuations during dynamics on the
first excited electronic state potential energy surface of C;,Hjg
beginning from the optimized ground state geometry. Simulations
are performed using ESMD with a fully converged SCF and RPA
calculation (y = 107'° V) or using XL-ESMD with Ny = 2 and y =
107 eV.

conditions, we find that ESMD and XL-ESMD produce
trajectories which follow each other very closely for this
realistically sized system, with some expected divergence seen
at 8—10 ps of simulation time. This test problem demonstrates
that XL-ESMD can be used to stabilize and accelerate ESMD
for large molecular systems simulated with the NEXMD
package.

4.3. Stability Analysis. We now explore the stability of the
total energy in XL-ESMD simulations by examining the
magnitude of fluctuations produced while varying the
convergence of the SCF and the RPA calculations. In Figure
6, the upper panel shows how varying the number of SCF
cycles affects the fluctuations in XL-ESMD using acetaldehyde
simulations. Longer time scale fluctuations which are similar in
magnitude to the energy drift of a ESMD simulation (no
dynamical variable propagation) are observed. Reducing N,
produces slightly larger short time scale fluctuations. With N
= 0 the total energy has an initial expanded fluctuation, which
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Figure 6. Comparison of total energy fluctuations from XL-ESMD for
different N, (upper panel) and y (lower panel) during dynamics on
the first excited electronic state potential energy surface of
acetaldehyde beginning from the optimized ground state geometry.
Simulations with N, = 2 and y = 10™* eV are performed with ESMD
for comparison. All other simulations are performed with XL-ESMD
according to the criterion given in the figure legend.

stabilizes rapidly in approximately 20 time steps. These results,
in combination with results from previous XL-BOMD
simulations, indicate that it might be possible to further
improve our XL-ESMD formulation, possibly without any
iterative SCF optimization of the ground state and with an even
faster and more simplified calculation of the excited state.

In the lower panel of Figure 6, the Davidson convergence is
varied with N, = 2. Both y = 107> and y = 10™* have similar
magnitudes of fluctuations. At y = 107, a larger fluctuation and
initial offset energy after the first few time steps are present. At
this convergence, a single iteration of the Davidson algorithm is
approached, albeit at a notably reduced accuracy. In Figure 7,
we demonstrate that XL-ESMD provides the possibility to
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Figure 7. Mean AE,, in the first 250 fs of simulation time as a
function of y and Ny in XL-ESMD simulations performed in this
study.
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substantially relax the convergence criteria for the ground state
and the transition density matrices. Even using the 0-SCF
approach to the ground state calculation produces accurate
results in XL-ESMD despite initial amplified fluctuations.

5. CONCLUSION

In this contribution we formulate the extended Lagrangian
approach to excited state molecular dynamics (XL-ESMD)
framework. This allows for an efficient excited state Born—
Oppenheimer dynamics (i.e, a case of propagation along a
single adiabatic potential energy surface) within time-depend-
ent self-consistent field (TD-SCF) methods for excited states
such as time-dependent Hartree—Fock (TD-HF), Configu-
ration Interactions Singles (CIS), time-dependent density
functional theory (TD-DFT) or Tamm—Dancoff approxima-
tion to TD-DFT. The XL-ESMD requires both ground state
and transition density matrices to be propagated as dynamical
variables. Similar to its counterpart for the ground state (XL-
BOMD),ZS’26 numerical convergence criteria in XL-ESMD are
significantly relaxed in both ground state SCF and excited state
iterative calculations using Davidson’s eigensolver. This results
in substantial numerical acceleration of the dynamics, while
avoiding any systematic drift of the total energy for either
ground or excited state.

We further implemented the presented XL-ESMD method in
our semiempirical NEXMD package>> and explored its efficacy
on a small (acetaldehyde) molecule. We then demonstrated its
application to a larger system (cyclic polyene Cs,Hj), a typical
molecular size for technology-relevant applications. For both
molecular examples, the numerical performance of XL-ESMD
was tested for variety convergence criteria for ground and
excited state simulations. In comparison, we showed how
conventional ESMD results in a significant total energy drift,
unless tight convergence criteria are used. Specifically, for the
studied test system we found that it is possible to reduce the
convergence criterion for the excited state calculations up to 1
meV, while nearly fully eliminating SCF cycles when XL-ESMD
is used. We subsequently observe a substantial numerical speed
up with a reduction of the average numbers of SCF cycles and
the number of Davidson iterations. These results provide
tentative guidelines for numerical simulations of other systems.

Further work will explore extended Lagrangian formulations
for 0-SCF and simplified RPA diagonalization iterations,
concerted propagation of multiple excited states and non-
adiabatic surface hopping dynamics**** occurring beyond the
Born—Oppenheimer regime.
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