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ABSTRACT: Machine learning (ML) is quickly becoming a premier tool for
modeling chemical processes and materials. ML-based force fields, trained on large
data sets of high-quality electron structure calculations, are particularly attractive
due their unique combination of computational efficiency and physical accuracy.
This Perspective summarizes some recent advances in the development of neural
network-based interatomic potentials. Designing high-quality training data sets is
crucial to overall model accuracy. One strategy is active learning, in which new
data are automatically collected for atomic configurations that produce large ML
uncertainties. Another strategy is to use the highest levels of quantum theory
possible. Transfer learning allows training to a data set of mixed fidelity. A model
initially trained to a large data set of density functional theory calculations can be
significantly improved by retraining to a relatively small data set of expensive
coupled cluster theory calculations. These advances are exemplified by
applications to molecules and materials.

Computational atomistic modeling has become a crucial
element in our discovery and understanding of the

fundamental properties of natural and human-made materials.
In the early decades of computing, atomistic computation
studied simple model systems and small quantum mechanical
(QM) systems. Future advances in science and technology will
require accurate modeling capabilities for ever larger and more
complex molecules and materials. However, modeling of even
medium-sizedmolecules within sophisticated quantummechan-
ical methods such as ab initio techniques1,2 involves significant
computational effort, and large systems of practical interest are
out of reach. As a rule of thumb (see the abstract graphic),
computational chemistry methods that approach the exact
quantum mechanical solution for an electronic system have
computational costs that grow very rapidly with system size. An
important benchmark for QM methods is to achieve so-called
chemical accuracy, errors of approximately 1 kcal/mol, which is
the energy scale associated with thermal fluctuations at ambient
temperatures. Benchmark ab initio methods such as coupled
cluster single−double with perturbative triples2 [CCSD(T)]
provide such accuracy without empirical fitting parameters and
directly capture physical interactions such as electrostatic
interactions and dynamic electron correlation. Approximating
the Schrödinger equation at the CCSD(T) level of accuracy
requires computing a massive number of many-center electron
integrals and repeated diagonalization of the very large self-
consistent Hamiltonian matrix. The computational cost of
CCSD(T) scales asO(N7), which limits practical system sizes to
perhaps N ∼ 102 atoms. Density functional theory (DFT)

models3 can reduce this scaling toO(N)−O(N3), underpinning
the practical success of this approach. However, relative to
CCSD(T), the inexact functionals of DFT limit its accuracy, and
the computational costs of DFT can still be considerable for
systems with >103 atoms. To further reduce the computational
cost, approaches utilizing effective Hamiltonian models such as
semiempirical methods, e.g., Austin model 1 (AM1)4 or density
functional tight binding (DFTB),5 neglect three- and four-atom
center integrals at the cost of accuracy. The remaining two-
electron integrals are replaced by empirical parameters to
account for the neglected behavior. The significant gain in
computational efficiency, however, may require compromises
with respect to accuracy. Quite often, properly adjusted
parameters work well within a certain range of chemical systems,
but the transferability of such methods is not always obvious and
should be studied for every specific case.
Modeling of dynamical processes (chemical reactions, shocks,

protein folding, and phase transitions in materials, to name a
few) requires large-scale molecular dynamics (MD) simulations.
Here finite-temperature dynamical trajectories sample potential
energy surfaces (PESs) (defined by the energy of a system as a
function of nuclear coordinates or geometry) and are generated
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by using forces (i.e., gradients of the energy) calculated “on the
fly”. Ab initio MD (AIMD) uses forces computed from
electronic structure calculations. While accurate, AIMD is
numerically expensive as outlined above, which severely limits
its applications in terms of system size and time scales. A more
dramatic computational simplification is to neglect quantum
mechanics entirely with the use of classical force fields, which
approximate the system as a classical “beads and springs”model
with additional terms for Coulomb and dispersion interactions.
Thesemodels typically exhibitO(N) scaling with a low prefactor
facilitating MD simulations of systems with millions or even
billions of atoms, from which thermodynamic properties as well
as non-equilibrium processes can be directly computed.
Classical force fields traditionally assume a fixed, physically
motivated functional form. The total energy of a system is split
into bonded terms for covalently bonded atoms and nonbonded
terms. The bonded terms, in turn, consist of three components
(bond lengths, bond angles, and dihedral angles), and each term
has empirical parameters. The parameters for each term depend
not only on the chemical elements in the bonds but often on the
local chemical environment. Different carbon−carbon bonds,
for example, will be assigned different parameters to represent
single or double bonds, or ring versus chain topologies.
Determining which parameters can be shared or must be
different can be a laborious process and is often arbitrary. This
problem persists for nonbonded terms, due to the necessity of
determining a reasonable atomic charge for ionic compounds or
polar molecules. One strong disadvantage of force fields is that
the bonding-oriented modeling approach limits their applic-
ability to nonreactive conditions. Thus, they are not reliable for
investigations of, for example, reaction pathways and transition
states or generally dynamics far from equilibrium. There are
more expensive force field models, such as ReaxFF,6 that are
capable of handling transition states and chemical reactions,
when explicitly parametrized to a specific set of reactions. While
the scalability of force fields is excellent, their accuracy and
transferability are severely constrained. This necessitates large
amounts of human time and effort spent by researchers to adapt
their parameters directly to the system under study prior to
scientific simulations of complex or novel chemicals and
materials.
Machine learning (ML)-based potentials are bridging the gap

between highly accurate quantum mechanics simulations and

the affordable, but less transferable, classical force field
approaches.7−9 ML workflows establish, by definition, an
empirical model of a data set and are capable emulating the
underlying electron structure calculations to very high levels of
accuracy. A broad variety of ML approaches have been
developed, and the remarkable success across a variety of
chemistry and materials fields has been remarkable.10−24 At the
highest level, all ML-based potentials can be understood as
intelligent schemes for interpolating on the training data. To

maximize the transferability of the ML model, this interpolation
happens in an abstract space, in which the representation of the
training data point has undergone a transformation, usually a
nonlinear transformation to a high-dimensional space. One
broad class of ML algorithms consists of so-called kernel
methods; here, the ML practitioner specifies a kernel function
that serves as a measure of similarity between two inputs (e.g.,
two local atomic environments).25−28 The greater this similarity
measure, the closer the model outputs are expected to be. In
kernel ridge regression (KRR) or the closely related Gaussian
process regression (GPR), model complexity naturally grows
with data set size. A disadvantage of such nonparametric
modeling, however, is that the ML models can become very
computationally expensive for large data sets, both in the
training and in the application phases. The technique of
sparsification can significantly reduce the computational costs
for kernel-based modeling. Alternatively, it can be advantageous
to assume some fixed (parametric) functional form for the
model, typically with a large number of fitting parameters.
Standard examples of parametric models include, e.g., linear
regression, and its generalization to neural networks. In this
context, a large area of research is the design of good descriptors
(also known as feature vectors) that highlight the important
chemical features in an input data point (i.e., a local atomic
environment). With very carefully designed descriptors,25,29−31

relatively simple ML models, such as linear regression, can
achieve very high accuracies. Alternatively, with neural net-
works, the input training data can be supplied in a relatively
simple representation, and the burden of good descriptor design
may be shifted into the automated ML training procedure.
In this Perspective, we focus on the development and

application of neural network (NN)-based interatomic

potentials as surrogate energy models to ab initio methods,
replacing the conventional classical force fields and enabling
large-scaleMD simulations.6,32,33 This development promises to
provide MD simulations with much improved accuracy and
transferability, while preserving O(N) numerical scaling. NNs
are highly flexible, nonlinear functions with thousands to
millions of parameters that are optimized to fit a data set. A large
number of parameters provides many degrees of freedom,
allowing an optimization algorithm to decide the best mapping
that transforms the input into an estimation of a desired
property. The optimization algorithm requires a training set,
which is a set of inputs (e.g., molecular geometries) and
corresponding labels (e.g., reference energies and/or forces). An
important concept in machine learning is generalization error.
Machine learning models of all forms can suffer from overfitting,
a condition in which the model learns to fit the training data but
does not make similarly accurate predictions about new data. In

Machine learning (ML)-based po-
tentials are bridging the gap
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ferable, classical force field ap-

proaches.

In this Perspective, we focus on
the development and application
of neural network (NN)-based
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tional classical force fields and
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the context of ML-based potentials, we can measure model
accuracy in different ways. One important measure is size
extensibility, the ability of the model to make accurate
predictions for systems much larger than those observed in
the training process. Another important measure is chemical
transferability, the ability of the model to make accurate
predictions for systems that are structurally distinct from those
observed during training.
Neural Networks in Brief. In their barest form, NNs can be

treated as black boxes that are trained to learn the mapping
between inputs (here, geometry of a local atomic environment)
and outputs (here, molecular energy). At the core of neural
networks are artificial neurons. Each neuron forms a cheap,
parametrizable nonlinear function from several inputs, to a
single output, or activation, using a set of weights and bias

parameters and an activation function. The activations are
organized into layers. The input layer accepts feature vectors
(for our purposes, a set of numbers containing information
describing themolecular composition and geometry). In the first
layer, a set of neurons take this feature vector and compute a
vector of activations, giving rise to a hidden layer (hidden,
because its values are not directly constrained by the input or
outputs in the data set) whose activations constitute a new,
processed feature vector. This new set of information is then
passed to another layer of neurons, and so on, until the final
output layer, which constitutes the final output of the network
(e.g., predicting molecular energy) .34

When first initialized with random parameters, a neural
network will not compute any particularly meaningful function.
The parameters of the network need to be optimized to perform

Figure 1. (A) Non-extensible fixed input size NNwith the entire system serving as input into one network (left) and extensible Behler−Parrinello type
NN with a distinct network for each chemical element environment (right). (B) ANI NN architecture. There is a distinct NN for each chemical
element, and the total energy is a sum of NN outputs. The input is a vector of radial symmetry functions and a matrix of angular symmetry functions.
Descriptors differentiate between different elements within a cutoff. (C) HIP-NN architecture. The input is atomic species reflecting dressed atom
approximation in Êi

0. Interaction layers (green boxes) transmit information between atoms within a local neighborhood. The energy terms decrease
hierarchically as Êi

0 < Êi
1 < Êi

2. Reproduced with permission from ref 73. Published 2018 American Institute of Physics.
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the task at hand. This is accomplished via a loss function. This
loss function is a scalar quantifying the overall difference
between the predicted and reference values. A typical loss
function is the mean squared error between the predictions and
true reference values (e.g., the result of ab initio simulation). To
train the network, batches of examples from the data set are
presented, and the prediction and associated loss function are
computed. The key step to updating the network is the gradient
of the loss function of the parameters; by taking the gradient of
the loss function and stepping the weights and biases of all
neurons subtly in the direction that reduces the loss, one can
improve the network. This process is repeated over the data set
over many iterations, sometimes millions, until a satisfactory
match to the reference data set is constructed. To avoid
overfitting to the training data, a common strategy is early
stopping, whereby the neural network training procedure is
stopped when model performance is no longer improving on a
held-out validation data set.
A key algorithm called backpropagation (i.e., reverse mode

automatic differentiation)35−37 is used to make this process
efficient. Naiv̈e gradient algorithms such as finite differencing
scale very poorly with respect to the number of parameters with
which the gradient must be taken. In contrast, backpropagation
allows for the simultaneous calculation of all parameter gradients
to floating-point accuracy. This operation is computationally
efficient, as the time scales in precisely the same way as the
computation of the network output. The key of the method is to
harness the recursive formulation of the multivariate chain rule
along with dynamic programming to iteratively calculate
gradients of all variables backward, starting from the loss,
proceeding to the final layers of the network, through the hidden
layers, and eventually back to the network inputs. Automatic
differentiation plays another key role for neural network
potentials. The algorithm can be used to compute the gradient
of a network trained to produce energy with respect to the input
positions, yielding the force corresponding to the energy
prediction. In a suitable programming framework, automatic
differentiation thus does not require a separate set of codes to
predict force and energy; the force can be cleanly expressed as
the gradient of the energy. Similarly, training to forces requires
gradients of a loss function that includes these forces, and
successive calls to automatic differentiation can accomplish this.
As such, in many cases there is very little programming needed
to promote a model from energy prediction and training to force
prediction and training, and it is not difficult to define models
whose forces conserve energy (see recent reviews38,39 for a more
detailed discussion of ML potential architectures).
Beyond these generalities, neural networks come in many

flavors. Perhaps the most salient is the architecture of the
network, the specification of the overall structure of the input
features, neuron functional forms, and interconnections
between neurons, rather than the individual parameter values.
Neural Network Architectures for Potentials. The first

successful attempts to apply NNs in chemistry and physics were
made in the late 1980s and early 1990s. These include the
analysis of nuclear magnetic resonance (NMR),40 mass
spectra,41 and the predictions of protein structures.42,43 Since
then, ML has been actively developed to predict total44−48 and
atomization energies,49,50 forces,51−53 dipole moments,47,54,55

assignment of atomic charges,56,57 chemical reactions,58,59 new
materials,60−62 etc. In 1995, Blank et al., for the first time,
implemented NNs to establish a structure−energy relation-
ship.63 The input geometry representation of a system was the

first challenge that early research efforts faced when dealing with
NN potentials. Pioneering works were devoted to simple
molecular systems of a fixed size like diatomic molecules
adsorbed on crystalline surfaces63,64 and water dimers.65 Direct
geometric parameters of a system such as bond lengths and
angles or simply Cartesian coordinates served as fixed-size inputs
for the NN (Figure 1A, left). This implies explicit limitation to
the extensibility of earlier ML potentials: NNs can work only
with inputs of a fixed size, because the addition of more atoms
increases the number of input neurons, introducing new,
unfitted parameters into the system.
Efforts by Hobday et al. in 1999 introduced a neural network

architecture that offered size-extensible predictions for hydro-
carbons by providing a bond-centered network; local energy
predictions are made for each pair of atoms within a fixed cutoff
radius from each other.66 In 2007, Behler and Parrinello
proposed an extensible NN representation for high-dimensional
PESs.34 Themain idea is that the total energy can be represented
by a sum of effective individual atomic contributions (Figure 1A,
right), that is, E = ∑i

NEi. Here, N is the number of atoms in a
system. This atom-centered notion of system energy remains the
leading technique for building size-extensible neural networks,
although bond-centered and other approaches have not been
abandoned.67,68 While intuitive and largely successful, the
general strategy of decomposing energy as a sum of local
contributions may not be fully consistent with the underlying
quantum mechanics. Behler also articulated three criteria for
molecular descriptors that machine learning potentials should
satisfy: rotational and translational invariance; the exchange of
two identical atoms should yield the same result; and the
representation (input vector) should describe a molecule’s
geometry in a unique way given a set of atomic positions and
types.69 Combined with a local energy decomposition approach,
these principles have led to modern NN potentials, which
provide physical guarantees on the functional form of the energy
without eradicating the flexibility of the original black-box
approaches and the many approximations of classical force
fields.
These principles were used to construct the high-dimensional

symmetry function (SF) approach to featurizing atomic
environments. Here, the Cartesian coordinates are transformed
into a set of SF values {Gi

μ}, where μ indexes the various
symmetry functions and i indexes the atoms. The set of {Gi

μ}
hence describes the atomic environment of each atom in the
system. There are two types of SFs, the radial, or two-body, SF,
which describes the distances between atom i and all
neighboring atoms j; and the angular, or three-body, SF,
which provides information about angles between atom i and
pairs of neighboring atoms j and k. In both types, spatial locality
is ensured by a smooth radial cutoff (Rc) function:

f

R
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R R

R R
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which reflects the decrease in the level of interaction as the
distance Rij between two atoms increases. The radial atomic
environment of atom i is probed by a vector Gm

R =
∑j≠i

all atoms exp[−ηm(Rij − Rm
S )2]fc(Rij), where m indexes a set

of hyperparameters η and Rs. Altogether, these quantities define
an atomic environment vector (AEV) for every atom with sizes
ranging from tens to thousands of elements depending on the
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particular implementation.70,71 Originally, the Rm
S parameters

were set to a constant 0, varying only ηm to change the width of
the Gaussian for different SF probes. Later, varying Rm

S enabled
the probing of specific radial shells with a constant η set such that
the Gaussian probes overlap. This original formulation limits the
number of distinct chemical elements [such as hydrogen (H),
carbon (C), or oxygen (O)] that NNs can learn, because this
NN architecture implies a separate NN for each chemical
element. Additionally, for N chemical elements, the complexity
of angular descriptors scales as N(N + 1)/2.
Although the Behler−Parrinello SFs solved the problem of

size extensibility in many cases, it did not lead to chemical
transferability of the learned potentials. This problem might
have two causes. First, it is possible that the original SFs are not
descriptive enough to recognize the common spatial patterns of
atoms (e.g., rings, heteroatomic bonds, functional groups, etc.)
in the molecular representation, a reason that hinders learning
interactions in one molecule and then applying this knowledge
for anothermolecule. Second, the original SFs do not distinguish
between different chemical elements in the summation over the
neighboring atoms. Therefore, the individual chemical element
specific NN potentials are unable to differentiate between atom
types within a given cutoff distance. These limitations restrict
the original applications of SFs to systems with few atom types or
small single-molecule data sets.
The ANI-1 NN model introduced in 2017 and constructed

using the ANI architecture71 (Figure 1B) modified the Behler−
Parrinello SFs to address chemical transferability and build,
arguably, the first extensible potential. The modified angular
symmetry functions were designed to spatially localize the
description of the angular environment of each atom within the
cutoff radius in a manner similar to varying the Rm

S parameters,
which spatially localize the radial environment within the local
cutoff. The ANI architecture also employs a specific set of
symmetry functions to provide better transferability on large and
diverse data sets by opting for maximum spatial locality for each
symmetry function in the AEV. Maximizing the symmetry
function spatial locality makes distinct features in a chemical
environment more recognizable, thus improving transferability.
ANI also provides radial and angular descriptors for each distinct
chemical element (and pairs of elements) that might be present
within a given cutoff radius. In other words, it is able to
differentiate atomic numbers in the local environment of atom i.
Numerous tests have shown thatANI-1 is an extensible potential
for organic molecular compounds containing the elements C, H,
N, and O that reaches the accuracy of DFT used as a reference
method. Herein we will use bold italic notation for NN
potentials (such as ANI-1) to emphasize specific ML models
capable of describing PESs. ANI-1 then stands for a respective
data set used to train the ANI-1 potential.
Further developments in atomistic NN architectures,

pioneered by Schütt et al. in the deep tensor neural network
(DTNN),44 have focused on a notion of end-to-end learning,
also adopted prominently by SchNet72 and HIP-NN73 (Figure
1C). In loose terms, it corresponds to the replacement of the SF
approach with the concept of an interaction layer that plays a
role similar role to that of the SFs, but with two important
differences. First, the parameters of these layers are fully
learnable, allowing the characterization of the atomic environ-
ment itself to be dynamically adjusted during training. Second,
these layers are designed to be stacked, allowing later layers to
characterize the atomic environment of an atom by adding
information about neighbors. This cascading approach allows

the energy function to remain local but accounts for the larger
environment in terms of a multiple of the cutoff length used for a
single interaction layer. HIP-NN, the hierarchically interacting
particle neural network (Figure 1C), further partitions atomic
energy contributions for each interaction layer, such that the
total energy E = ∑i

NEi is further decomposed as Ei =
∑n=0

NinteractionEi
n, with n indexing each level of interaction. The

network can be regularized to statistically reflect the notion that
Ei
0 > Ei

1 > ... > Ei
N, as in a series approximation such as the many-

body expansion. The zeroth energy term corresponds to the
dressed atom approximation67 because the input to the zeroth
layer is simply atomic species. Further terms refine early
predictions within higher-order functions, and the hierarchical
assumption corresponds to the notion that simpler functions
should be able to account for much of the remaining energy to
fit; the last and therefore highest-complexity neurons corre-
spond to large many-body effects, which should not account for
a large fraction of the system energy.
The NN architectures schematically presented in Figure 1

emphasize some commonly used principles for constructing ML
interatomic potentials. One key point that is currently a subject
of intense research is recapturing long-range interactions such as
Coulombic interactions, van der Waals forces, and dispersive
interactions in these inherently local models.74,75 Much work

has focused specifically on including Coulombic interactions in
ML potential models.47,76,77 Other recent work has focused on
developing a NN potential for modeling the dynamics of
electronically excited states.78 These models are required to
predict not only energies and forces for all excited states of
interest but also all couplings to model transitions between
states. The current state-of-the-art in this area is the SchNarc
model, which was shown to very accurately model the exited
state dynamics on the methylenimmonium cation and
thioformaldehyde, independently. While excited state ML
potentials are very promising, similar to the early days of
ground state ML potential development, they are currently
limited to modeling a single system at a time requiring retraining
from application to application. This also limits the size of
molecular systems that can be modeled using such an approach,
because building an extensible potential is currently feasible. As
the field evolves (see a recent review79), we hope to see
workflows extended in such a way as to capture general excited
state potential energy surfaces covering large swaths of chemical
space simultaneously.

Data Set Diversity. Having a good NN architecture is
important, but the largest factor in ML model accuracy is the
quality and diversity of the training data. As the use of ML
potentials in chemistry has grown, there has been an increasing
focus on methodologies for generating training data sets. Many
early ML potential development efforts were focused on specific
applications. For example, a small data set of hundreds to
thousands of conformations can be generated for the same

One key point that is currently a
subject of intense research is
recapturing long-range interac-
tions such as Coulombic, Van der
Waals forces and dispersive in-
teractions in these inherently

local models.
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molecule and used to train a machine learning potential to study
that specific system.47,80 An example from materials science is
the generation of data from selected crystal structures of
interest.34,70,81 This specialization approach often leads to very
accurate fits because of the narrow scope of the data. Once
trained, theMLmodel provides a very fast prediction of energies
and forces that can be applied inMD. However, this approach to
data essentially scales the same as the underlying QM method
used for reference data generation because new QM data must
be calculated for any system of interest. Researchers also require
expertise in fitting ML potentials to use specialized ML
potentials.
A recent focus has been the development of ML potentials

that can be applied to broad classes of molecules (e.g., organic
molecules)47,82 and materials.83,84 A general-use ML potential

should be applicable to systems larger than those in the training
data set (size extensibility) and accurately describe a wide variety
of configurations and conformations of the elements in the
original training set (transferability). Thus, an adequate
coverage of the problem space of interest defining the diversity
of training sets is critical. To this end, we delineate the chemical
and conformational diversities of the data sets. The former refers
to the coverage of molecular space, chemical elements, and
chemical bonding patterns, whereas the latter alludes to how
well the PES of a system is represented via non-equilibrium
geometry samples. Both diversities are critical for obtaining a
truly general-use NN potential valid for non-equilibrium
situations and for generally addressing reactive chemistry
processes: the model should be trained to a data set that covers
the broadest possible range of local interactions and spatial
patterns.
To gain a sense of combinatorial difficulty and chemical

diversity, one may consider the magnitude of the GDB-17
database, created by the Chemical Space Project.85 This
database contains 166.4 billion organic molecules of ≤17
atoms of C, N, O, S, and halogens (plus the necessary hydrogens
to saturate unfilled bonds). Inspired by GDB-17, smaller data
sets of organic molecules have become popular for benchmark-
ingML potentials. For example, the QM-986 data set has∼134K
stable small organic molecules (C, H, O, N, and F elements)
with up to nine non-hydrogen atoms. QM-9 contains relaxed

equilibrium geometries and includes molecular properties like
energy and dipole moment, calculated at the DFT level.
Performance in predicting QM-9 molecular energies is a
particular popular benchmark. Soon after this data set was
introduced, models reached accuracies well below 1 kcal/mol,
for example, as reported in refs 44, 87, and 88. The scatter plot in
Figure 2A shows HIP-NN performance on this QM-9
benchmark. Here, HIP-NN molecular energy predictions are
plotted against reference DFT calculations for ∼20K test
molecules that were withheld from the training process. The
scatter plot is barely distinguishable from a straight line, and the
mean absolute error (MAE) of HIP-NN predictions is a
remarkable 0.26 kcal/mol.73

Although QM-9 is a very popular benchmark, and a great first
test for new ML model architectures, it lacks conformational
diversity. A more recent alternative, the ANI-1 benchmark data
set,71 contains non-equilibrium conformations for ∼57K
molecules that have up to eight non-hydrogen atoms (C, N,
and O). Through sampling of the normal modes, a total of ∼20
million non-equilibrium molecular conformations are included
in the ANI-1 data set, along with DFT molecular energy
calculations. Trained to this data set, the ANI-1 neural network
potential demonstrated a strong ability to be generalized to new
molecules. Figure 2B illustrates the performance of the ANI-1
potential when tested on a data set of molecules containing up to
10 non-hydrogen atoms. Note that the molecules in the testing
data were all larger than those in the training data. Nonetheless,
the ANI-1 potential achieved near chemical accuracy, with a
root-mean-square error (RMSE) of 1.8 kcal/mol, and the
resulting potential provides a smooth PES for conformational
changes, such a dihedral rotation in larger drug molecules
(Figure 2C). The ANI-1 potential significantly outperforms
popular semiempirical methods such as PM6 in reproducing
DFT energies. In Figure 3C, we compare the diversity of
chemical environments around H and C atoms in equilibrium
QM-9 and non-equilibriumANI-1 data sets. This visualization is
generated using the t-distributed stochastic neighbor embed-
ding (t-SNE)89 technique for portraying multidimensional data
in a reduced two-dimensional (2D) representation. Thus, each
point in Figure 3C corresponds to H or C atomic environments
in each distinct molecule in the data sets. As expected, ANI-1 is
much more diverse than the QM-9 data set, which contains only
equilibrium geometries.
NN architectures constructed using the framework described

above have already delivered a wealth of important chemical
information.57,70,90,91 For example, another popular NN
potential, TensorMol, which was trained on ∼370K water
clusters, perfectly describes the PES of breaking a hydrogen
bond in a water dimer (Figure 3D).47 Furthermore, the
predicted dipoles of a system are in excellent agreement with
DFT results (see Figure 4 in the original work).47 Additionally,
besides predicting total energies, ML potentials provide access
to interesting atom-wise properties such as local chemical
potentials. For example, the local chemical potential is defined as
the energy of atom A at position r in molecule M. The local
chemical potential isosurfaces (generated via the DTNN44) of
the hydrogen test charge for some organic molecules are shown
in Figure 2E. These isosurfaces enable the estimation of bond
saturation and degrees of aromaticity. For instance, the DTNN
predicts the relative aromaticity by comparing benzene and
toluene. Furthermore, it is possible to estimate the stability of
different fragments of a molecule because DTNN naturally
provides the respective atomic energies. Indeed, C6O3H6 has the

Having a good NN architecture is
important, but the largest factor
in ML model accuracy is the

quality and diversity of the train-
ing data.

A general-use ML potential
should be applicable to systems
larger than those in the training
data set (size extensibility) and
accurately describe a wide variety
of configurations and conforma-
tions of the elements in the

original training set (transferabil-
ity).
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most stable carbon ring in the GBD-9 database according to
DTNN predictions.
Automated Data Set Construction. Importantly, gen-

eration of large training data sets for NNs, which are exemplified
in Figure 2, requires a significant investment of computational
time. This raises an important question of automatic generation
of new data points, particularly addressing the underrepresented
regions in the existing data set. Beyond direct reduction of the
numerical efforts, this would also help to reduce human labor by
minimizing the involvement of the researcher in the data
generation process. Active learning (AL) aims to expand data
sets based on iterative applications of sampling with uncertainty

quantification (UQ)-driven selection of poorly represented
atomic systems. Training labels (energies and forces) are
generated for the UQ-selected atomic systems using ab initio
simulations and then added to the training data set. The ML
potential is retrained, and the sampling and UQ selection is
repeated iteratively. AL enables a significant reduction in the
number of ab initio simulations needed while ensuring the
maximal diversity of a data set. In essence, AL helps to automate
the development of ML potentials while also removing human
bias in data selection. A simple but effective ensemble UQ
strategy called query by committee92 relies on the comparison of
several NNs trained independently, allowing the ML model to

Figure 2. (A) Correlation plot between DFT energies and HIPP-NN predictions for the QM-9 database for equilibrium structures with an MAE of
0.26 kcal/mol. (B) Correlation plot between DFT energies and ANI-1NN predictions. Relative energy comparisons from random conformations of a
random sampling of 134 molecules from GDB-11 all with 10 heavy atoms. There is an average of 62 conformations, and therefore energies, per
molecule. None of the molecules from this set are included in any of the ANI training sets. Reproduced with permission from ref 71. Copyright 2017
The Royal Society of Chemistry. (C) One-dimensional potential surface scan generated from DFT, the ANI-1 potential, and two popular
semiempirical methods, DFTB and PM6. The atoms used to produce the scan coordinate are labeled in the images of the molecules in subplots.
Reproduced with permission from ref 71. Copyright 2017 The Royal Society of Chemistry. (D)TensorMol PES of breaking a hydrogen bond between
two waters by rotating one water around the O−H bond. The DFT (ωB97X-D/6-311G**) results are shown as a dashed orange line, and the
TensorMol force field results are plotted as a solid blue line. Reproduced with permission from ref 47. Copyright 2018 The Royal Society of Chemistry.
(E) DTNN local chemical potentials ΩC(r) of some organic molecules (using a hydrogen test charge on ∑i||r − ri|| = 3.7 Å). Reproduced with
permission from ref 44. Copyright 2017 Springer Nature Ltd.
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select needed data before running reference QM calculations
(Figure 3A). The schematic workflow of AL is shown in Figure
3B. It is performed using an ensemble of NNs within, for
example, an MD simulation. While MD is running with the
existing pretrained ML potential, each member of the NN
ensemble is making a prediction. If the NNs’ predictions deviate
too much from each other, the uncertainty of the model is
deemed high for this part of the phase space (i.e.,
conformations) and the training set should be augmented near
this data point. ANI-1x, a data set of properties for 5 million non-
equilibrium DFT calculations, is created in this fashion.93 This
strategy is further applied to the development of the ANI-2x data
set,82 which extends ANI-1x to new elements S, F, and Cl. As
shown in the t-SNE plot (Figure 3C), ANI-1x preserves most of
the chemical diversity of the ANI-1 data set while being 4 times
smaller. Moreover, some conformations with O−H interactions
are even better sampled in ANI-1x, resulting in a slightly more
accurate ANI-1x potential compared to the original ANI-1
model.
Careful AL-based data set design becomes especially

important for numerically expensive, highly accurate QM
methods such as the CCSD(T) combined with the complete
basis set (CBS) level of theory, considered a gold standard in
quantum chemistry. The ANI-1ccx data set is generated by
iteratively applying an active learning “filter” to ANI-1x, which

results in properties of ∼500K molecular structures evaluated at
a highly accurate level of theory near CCSD(T)/CBS quality
[dubbed CCSD(T)*/CBS].93 The 2D t-SNE representation of
this data set shown in Figure 3C indicates that ANI-1ccx
essentially preserves the ANI-1x chemical diversity.
Notably, the extreme computational cost of constructing such

data sets usually limits the database expansion; the resulting
NNs thus lack reliability due to overfitting and other issues. A
subsequent question about how to properly combine and take
advantage of multiple data sets computed with different
fidelities, such as numerically cheap DFT results (that may
encompass, e.g., 5 million structures in the ANI-1x data set93)
and expensive CCSD(T)/CBS simulations (that may contain,
e.g., only 500K data points in the ANI-1ccx data set93), then
arises. Transfer,94,95 delta,96,97 and joint98,99 learning techniques
address these issues. For example, transfer learning starts with a
“cheap” but very diverse DFT data set to obtain an extensible
and transferable NN model with DFT accuracy. Then this
model is retrained, or refined, on a smaller, higher-accuracy data
set, after fixing the majority of the NN parameters. A schematic
workflow of transfer learning applied to the ANI-1x and ANI-
1ccx data set93 is shown in Figure 3D.
A concerted application of active and transfer learning

techniques can describe non-equilibrium processes with
quantitative chemical accuracy. For example, Figure 4A shows
the potential performance of ANI-1ccx on the ISOL6 bench-
mark that contains chemical reactions and isomerization
energies. The graph shows the differences among the reference
energies at the CCSD(T)-F12a/aug-cc-pVDZ level, energies
computed with the DFT model (ωB97X/6-31g*), ANI-1x and
ANI-1ccx potentials, and the CCSD(T)*/CBS approximation
scheme. As is frequently the case for chemical reactions, the
ωB97X with the modest basis set 6-31g* is not particularly

Figure 3. (A) Schematic representation of the ensemble deviation of NNs in poorly covered regions of phase space. (B) AL workflow for the MD
sampler. (C) t-SNE representation of hydrogen and carbon environments in QM-9 (134K equilibrium structures), ANI-1 (20million non-equilibrium
structures), ANI-1x (5 million non-equilibrium structures), and ANI-1ccx (500K non-equilibrium structures) data sets. Reproduced with permission
from ref 93. Copyright 2020 Springer Nature Ltd. (D) Example of a DFT → CCSD(T)/CBS transfer learning workflow.

Active learning enables a signifi-
cant reduction in the number of
ab initio simulations needed

while ensuring the maximal di-
versity of a dataset.
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accurate. As expected, ANI-1x, which was trained to data from
the same level of theory, mimics the performance of DFT. The
ANI-1ccx potential derived via transfer learning is much more
accurate and closely resembles the behavior of the CCSD(T)*/
CBS method.93 Therefore, the transfer learning approach
significantly improves the accuracy of the pretrained ANI-1x

model, while preserving its original transferability and
extensibility.
For an example of torsional profiles, Figure 4B compares the

behavior of the ANI-1ccx model with ANI-1ccx-R, which is
trained solely to the ANI-1ccx data set with only 500K data
points. Additionally, it examines the accuracy of various ANI
models against other QM and molecular mechanics methods.

Figure 4. (A) Accuracy in predicting reaction and isomerization energy. ANI-1ccx reaction and isomerization energy difference prediction on the
ISOL6 benchmark, relative to the reference CCSD(T)-F12a/aug-cc-pVDZ data. Methods compared are the ANI-1ccx transfer learning potential,
ANI-1x trained only on DFT data, the DFT reference (ωB97X), and coupled-cluster extrapolation scheme CCSD(T)*/CBS. Reproduced with
permission from ref 103. Copyright 2019 Springer Nature Ltd. (B) Accuracy in predicting torsional energies relevant to drug discovery. Methods
compared are QM (red and green), molecular mechanics (blue), and ANI (orange) performance on 45 torsion profiles containing C, H, N, and O
atomic elements. The gray dots represent the MAD of a given torsion scan vs the gold standard CCSD(T)/CBS approach. Reproduced with
permission from ref 103. Copyright 2019 Springer Nature Ltd.
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Torsional energy profiles play an important role in modeling soft
materials and in drug discovery. These are key quantities in
classical force fields that require careful parametrization. We use
the torsion benchmark of small organic molecules containing C,
H, N, andO atoms reported by Sellers et al.100 The whisker plots
in Figure 4B compare ANI potentials (yellow), three expensive
wave function-based QM methods (red boxes), four less
expensive QM methods (green boxes), and two versions of
OPLS (optimized potentials for liquid simulations) force
fields,101,102 a classical force field designed for accuracy on
diverse small organic molecules (blue boxes).103 The ANI-1x
potential, trained on DFT data, achieves an MAE of 0.47 kcal/
mol. Its performance mimics MP2/6-311+G** and lags just
behind the ANI-1ccx-R potential. The ANI-1x potential
outperforms the two force fields. At the same time, the ANI-
1ccx potential has a median MAE of 0.23 kcal/mol, 2 times
smaller than that of ANI-1x, which outperforms all utilized DFT

methods and approaches the accuracy of much more expensive
QM methods. It is important to emphasize that there is no
increase in numerical expense for ANI-1ccx over ANI-1x at
prediction time. Both ANI potentials scale linearly compared to
O(N3), which is typical for a hybrid DFT approach. Another
important insight from torsional benchmarks is that the transfer
learning approach results in accuracy that is better than that of a
model trained only on a small, high-quality data set.
In addition to molecular gas phase simulations, ML potentials

have been successfully applied in various condensed phase
simulations.49,70,104,105 For example, ANI-Al is a ML potential
recently proposed for aluminum solid state simulations.84 As a
continuation of the ANI-1x strategy, here active learning was
utilized to obtain a diverse training set with minimal human
intervention. The active learning loop includes three main steps:
(1) MD simulation at varying temperatures using the best
available ANI-Al model to sample new configurations, (2)
ensemble uncertainty estimation and DFT calculations for new
configurations that meet the uncertainty threshold, and (3)
training a new ANI-Al model to the augmented training data.
Although each AL MD simulation is initialized to a random
disordered system (melts), after several iterations, the AL starts
capturing ordered configurations like FCC, HCP, BCC, etc.
(Figure 5A). This is demonstrated in Figure 5B, which is a 2D t-
SNE representation colored with respect to the AL iteration

The transfer learning approach
significantly improves the accu-
racy of the pre-trained model
while preserving its original

transferability and extensibility.

Figure 5. (A) Melt curve as a function of pressure for DFT, ANI-Al, and the EAM potential of Mendelev et al., compared with experimental data.
Reproduced with permission from ref 84. Copyright 2021 Springer Nature Ltd. (B) t-SNE representation of training data for ANI-Al colored with
respect to an active learning iteration at which a sample was taken. (C) SOAP-GAPMLmodel that correctly predicts surface Si dimer tilt and that 7× 7
is the ground state structure. Reproduced with permission from ref 81. Copyright 2017 American Association for the Advancement of Science.
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number at which that region of space was sampled. Thus, the
uncertainty estimation during the MD run gradually accounts
for essential crystal structures. Importantly, the construction of
the training set is fully automated. Although crystal structures
are eventually sampled through the AL procedure, these formed
only through nucleation in the MD and were never directly
seeded by hand. The required human input was primarily the
range of temperatures for MD sampling and densities for the
random system construction and hyperparameters for the ML
model.
Figure 5A shows the performance of ANI-Al in predicting the

liquid−solid coexistence line in pressure versus temperature
coordinates. The ML model is compared to experimental data,
DFT, and the classical potential of Mendelev et al.106 that is
parametrized to model the melting point of aluminum (T = 933
K) at atmospheric pressure. Both ANI-Al and Mendelev
potentials predict the melting point of 925 K at this pressure,
which is in good agreement with the experimental data. Then,
the Mendelev potential starts to underestimate the melting
temperature beyond 5 GPa, while ANI-Al provides quantita-
tively accurate predictions up to∼50 GPa, which corresponds to
the range of densities sampled in the AL process. Interestingly,
the qualitative behavior of ANI-Al remains reasonable up to 250
GPa, which is well beyond what was included in the training
data.106

There are alternative ML strategies for addressing the
structural properties of solids. For example, recently, Ceriotti
and co-workers81 successfully applied a kernel-based ML
approach to model crystalline Si. Although the bulk Si can be
easily handled by many popular classical force fields, its surface
exhibits nontrivial structural and electrical properties. Si dimers
on the (100) surface are subject to Jahn−Teller distortion,
which results in their being tilted relative to the crystal surface
plane (Figure 5C). Empirical force fields fail to model such
behavior, while the SOAP (smooth overlap of atomic
positions)−GAP (Gaussian approximation potential) correctly
predicts the 19° tilt in agreement with DFT (Figure 5C).81

Another puzzling feature of the Si crystal is the 7 × 7
reconstruction of the (111) surface described by a dimer-
adatom-stacking-fault (DAS) model.107 Empirical potentials do
not recognize the 7 × 7 cell as the lowest-energy configuration
and mistakenly predict unreconstructed 1 × 1 to be the lowest-
energy structure (Figure 5C). At the same time, the SOAP-GAP
potential correctly predicts the 7 × 7 configuration to be an
energy minimum. This clearly reflects the extensibility of this
model as training data included reconstruction unit cells up to 3
× 3 in size.81

In conclusion, machine learning has become a ubiquitous tool
for modeling molecular and material potential energy surfaces
across diverse chemical spaces. These ML potentials enable MD
simulations at scales approaching those that can be achieved
with classical force fields, and with accuracies approaching those
of ab initio techniques. Recent trends show that a vast range of
ML techniques can be applied to an inexhaustible variety of
applications in chemistry and materials science. As the chemical
systems become larger and more complex, the classical methods
are becoming either inaccurate or too expensive for handling
such complexity, because bridging between quantum mechan-
ical and classical models is getting more tedious and difficult.
Thus, ML frameworks are a logical extension of chemical
science, which can learn from a vast amount of data. Overall,
modern ML algorithms provide the best ratio between speed

and accuracy, being significantly cheaper than ab initio and more
accurate and transferable than classical force fields.
In this Perspective, we discussed the history of and recent

advances in NN-based interatomic potentials applied to
molecular systems and solids. Provided with sufficiently diverse
training data, neural networks easily reproduce geometry-
dependent properties, providing accurate energy profiles of
large molecules and phase diagrams of solids. However, there is
still room for improvement. Development of general-use ML
potentials that can be applied to a wide variety of systems is an
active area of research. These universal potentials enable routine
high-throughput experimentation. Also, researchers who per-
form in silico experimentation frequently lack massive computa-
tional resources or expertise to develop a new model for each
system or material.
There are several opportunities to improve ML model

architectures by designing them to incorporate more physics.
ML-based potentials typically assume spatial locality. The force
on an atom is assumed to depend only on neighboring atoms
within some radius, typically around 5−10 Å. To accurately
model some materials, it will be important to capture long-range
effects such as Coulomb interactions. Recent work has proposed
ML-based potentials that employ self-consistent charge
equilibration schemes, inspired by their use in classical
polarizable force fields.77,108 Going beyond Coulomb inter-
actions, there may be other types of long-range interactions that
an ML model should ideally capture, e.g., dispersion and effects
due to delocalized electron wave functions. Finding general
frameworks for introducing such long-range interactions into
ML models seems to be an outstanding challenge. If one naively
increases the cutoff distance in the symmetry functions (i.e., in
the representation of the atomic geometry provided to the
neural network), then ML accuracy usually worsens due rapid
growth in the number of tunable parameters. Finding new ways
to introduce flexible long-range interactions, while imposing a
strong (and physics-inspired) regularization to control model
capacity, seems to be an important area for future development.

Along these lines, another challenge facing most existing ML
models is in the prediction of electronic properties like
spectroscopic states and excitation energies.109−112 A promising
direction here is to trainMLmodels that predict matrix elements
for an effective quantum Hamiltonian, as a function of the
atomic geometry.113−115 The effective Hamiltonian will
typically have a very small basis set but must still be solved
using traditional approaches from quantum chemistry. This

ML frameworks are a logical
extension of chemical science,
which are able to learn from a

vast amount of data.

Finding new ways to introduce
flexible long-range interactions,
while imposing a strong (and
physics-inspired) regularization
to control model capacity, seems

an important area for future
development.
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hybrid ML/QM approach introduces great modeling flexibility,
but also significant computational cost; training such ML
models can become especially expensive. Future algorithms that
retain the ML/QM modeling power, while reducing the
computational costs, will be crucial to making this modeling
approach practical in more contexts.
A concomitant effort in data generation is a challenging task

by itself. The extensibility and transferability of a model strongly
depend on the training set; thus, new techniques for potential
energy surface exploration, such as that inspired by an active
learning strategy, are essential for ML development in chemistry
and materials. Here fully automated generation of the data set
(as exemplified by the development of a general potential for
elemental aluminum84) is a very promising route. Arguably, a
common source of inaccuracy of general ML potentials, whether
in the context of chemistry or materials, comes from biasing the
data set toward the regions of chemical space that a researcher
perceives as important. This bias can cause an ML potential to
incorrectly favor some configurations over others in MD
simulations. In contrast, an automated, active learning approach
can lead to highly diverse data sets that perform well even
beyond what the ML modeler might have originally anticipated.
In the case of the ANI-Al potential,84 the model could be used to
perform highly accurate shock simulations, even though no
shocked data were included in the training data set. Although
narrowly focused models may have many practical uses, they run
the risk of entering an untrained region of chemical space in MD
simulations. Moreover, uncertainty quantification and sampling
of a relevant phase space become particularly important for the
deeper study of the reactivity and kinetics that require fast
sampling of rare events such as transition states. These
challenges have yet to be fully addressed by ML and active
learning and will need to be solved before tackling more difficult
problems, such as training ML potentials for condensed phase
reactive chemistry.
In retrospect, the flourishingML applications in chemistry are

reminiscent of quantum chemistry and molecular dynamics
developments during the past century. Initially, application of
software based on quantum mechanical models was an arduous
affair for the end user (such as a synthetic chemist or
spectroscopist), an exercise reserved mostly for experienced
theoreticians, but eventually, the market was flooded with user-
friendly quantum chemistry software along with copious
guidelines on how to select proper methods. Subsequently, for
example, a broad choice of DFT functionals or classical force
fields is available to the community of practitioners, making their
use routine. We observe a similar situation with ML methods
when more and more ready-to-use software packages (e.g.,
TorchANI,116 AIMNet code,117 ASE_ANI repo,71 SchNet,72

AENet,70 DeePMD,118 AMP,119 PROPhet,120 TensorMol,47

and others) and data sets (e.g., ANI-146 and ANI-1ccx93 sets,
ChemSpider,121 ISO17,88 etc.122,123) for different purposes are
released, with more released every year, which potentially may
revolutionize our chemical science discovery process and have a
major impact on academic and industrial research and
development.

■ AUTHOR INFORMATION

Corresponding Author
Sergei Tretiak − Theoretical Division, Center for Nonlinear
Studies, and Center for Integrated Nanotechnologies, Los
Alamos National Laboratory, Los Alamos, New Mexico

87545, United States; orcid.org/0000-0001-5547-3647;
Email: serg@lanl.gov

Authors
Maksim Kulichenko − Theoretical Division, Los Alamos
National Laboratory, Los Alamos, NewMexico 87545, United
States; Department of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States

Justin S. Smith−Theoretical Division and Center for Nonlinear
Studies, Los Alamos National Laboratory, Los Alamos, New
Mexico 87545, United States

BenjaminNebgen−Theoretical Division, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States;
orcid.org/0000-0001-5310-3263

Ying Wai Li − Computer, Computational, and Statistical
Sciences Division, Los Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States

Nikita Fedik − Theoretical Division, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States;
Department of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States

Alexander I. Boldyrev − Department of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322,
United States; orcid.org/0000-0002-8277-3669

Nicholas Lubbers − Computer, Computational, and Statistical
Sciences Division, Los Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States

Kipton Barros− Theoretical Division and Center for Nonlinear
Studies, Los Alamos National Laboratory, Los Alamos, New
Mexico 87545, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpclett.1c01357

Notes

The authors declare no competing financial interest.

Biographies

Maksim Kulichenko studied Applied Mathematics and Physics during

his undergraduate work at Moscow State University. He is currently

finishing his Ph.D. studies under the supervision of Prof. Alexander I.

Boldyrev at Utah State University. His Ph.D. studies are focused on

chemical bonding and nonlinear optical materials. In close collabo-

ration with Los Alamos National Laboratory, his recent research is

mostly focused on machine learning in chemistry, application of active

learning and biased potentials for constructing datasets.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Perspective

https://doi.org/10.1021/acs.jpclett.1c01357
J. Phys. Chem. Lett. 2021, 12, 6227−6243

6238

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sergei+Tretiak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5547-3647
mailto:serg@lanl.gov
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maksim+Kulichenko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Justin+S.+Smith"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+Nebgen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5310-3263
https://orcid.org/0000-0001-5310-3263
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ying+Wai+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nikita+Fedik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+I.+Boldyrev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8277-3669
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+Lubbers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kipton+Barros"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01357?ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c01357?rel=cite-as&ref=PDF&jav=VoR


Dr. Justin S. Smith is a staff scientist at Los Alamos National Laboratory

who specializes in the application and development of machine learning

methods in chemistry and materials sciences. He was awarded the

Nicholas C.Metropolis postdoctoral fellowship at Los Alamos National

Laboratory after completing his Ph.D. in chemistry at the University of

Florida prior to becoming a staff scientist. His work focuses on

developing methods for constructing data sets through active learning

and the design of novel architectures for building accurate and general-

purpose machine learning-based potential energy predictors of atomic

systems. He has developed and applied models to atomic systems

relevant to organic chemistry and materials science.

Due to his training as a chemist, Ben Nebgen has interest in applying

recent advances in data science and machine learning to the field of

theoretical chemistry. Development of machine learned molecular

potentials as well as machine learning assisted effective Hamiltonian

methods have been a primary focus in this area. Additionally, he has

applied recent advances in theoretical chemistry to various practical

applications such as the simulation of ionic liquids. Recently, his

research interests have expanded to the field of tensor methods, non-

negative matrix factorization, and other data driven methodologies.

Extensive experience with high performance computing has made this

transition possible.

Dr. Ying Wai Li is a staff scientist at Los Alamos National Laboratory

with research interests spanning statistical and condensed matter

physics, algorithm design, and high-performance computing. She

studied Physics during her undergraduate and M.Phil. work at The

Chinese University of Hong Kong, and obtained a Ph.D. from The

University of Georgia, U.S. Her expertise is in the state-of-the-art

classical and parallel Monte Carlo methods for the study of

thermodynamics and phase transitions, first principles methods

(density functional theory and quantum Monte Carlo) for the study

of material properties, and recently the application of machine learning

techniques to computer simulations and data analytics.

Nikita Fedik is a Ph.D. student in Prof. Alexander I. Boldyrev research

group at Utah State University. His research interests span different

areas of computational chemistry, from design of new clusters and

materials to data science and machine learning for chemical discovery.

His current collaborative projects with Los Alamos National

Laboratory are focused on the development of efficient dataset

generation protocols and empirical and semiempirical methods

dynamically parametrized by machine learning. Additionally, Nikita

has long-lasting passion for computers, and he is responsible for

advancement of supercomputer infrastructure in his research group.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Perspective

https://doi.org/10.1021/acs.jpclett.1c01357
J. Phys. Chem. Lett. 2021, 12, 6227−6243

6239

pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c01357?rel=cite-as&ref=PDF&jav=VoR


Prof. Alexander I. Boldyrev received his B.Sc./M.Sc.(1974) in
chemistry from Novosibirsk University, his Ph.D. in physical chemistry
fromMoscow State University, and his Dr. Sci. in chemical physics from
Moscow Physico-Chemical Institute (1984). He is currently a R.
Gaurth Hansen Professor at the Department of Chemistry and
Biochemistry at Utah State University. His current scientific interest
is the development of new chemical bonding models for clusters,
molecules, solid-state materials, novel two-dimensional materials and
other chemical species, where conventional chemical bonding models
are not applicable.

Dr. Nicholas Lubbers is a staff scientist at Los Alamos National
Laboratory whose current work lies at the intersection of machine
learning and the physical sciences. He studied Engineering Physics
during his undergraduate work at the Colorado School of Mines, and
continued studying Physics, earning a Ph.D. From Boston University.
His work has applied and developed machine learning methods for
materials science, seismology, fluid mechanics, and porous media, and
has focused in particular on the modeling of atomistic systems using
neural network approaches.

Dr. Kipton Barros is a staff scientist at Los Alamos National Laboratory
who works in the areas of physics and chemistry of materials,
computational science, and machine learning. He studied computer
science as an undergraduate at Carnegie Mellon University and physics
during his Ph.D. at Boston University. Barros’work spans many areas of
statistical physics, including the kinetics of phase transformations,
collective motion in granular matter, dielectric effects in soft matter
systems, multi-scale simulation methods, and algorithms for quantum
Monte Carlo codes. A recent focus is the development of machine
learning methods to extract insight from scientific data, and to
accelerate simulation workflows.

Sergei Tretiak received his M.S. (1994) from Moscow Institute of
Physics and Technology (Russia) and his Ph.D. (1998) from the
University of Rochester (US) where he worked with Prof. Shaul
Mukamel. He was then a Director-funded Postdoctoral Fellow in
Theoretical Division at Los Alamos National Laboratory (LANL) and
became LANL staff scientist in 2001. He is currently a deputy group
leader at T-1 (Theoretical Division, LANL), Adjunct Professor at the
University of California (Santa Barbara, CA) and Skolkovo Institute of
Science & Technology (Russia). The overarching theme of his research
is to develop a theoretical framework for electronic properties and
dynamics in complex molecular and semiconductor structures as well as
machine learning techniques for chemical dynamics.

■ ACKNOWLEDGMENTS
The work at Los Alamos National Laboratory (LANL) was
supported by the LANL Directed Research and Development
Funds (LDRD) and performed in part at the Center for
Nonlinear Studies (CNLS) and the Center for Integrated
Nanotechnologies (CINT), a U.S. Department of Energy Office
of Science user facility at LANL. This research used resources
provided by the Los Alamos National Laboratory Institutional
Computing (IC) Program. A.I.B. acknowledges the R. Gaurth
Hansen Professorship.

■ REFERENCES
(1) Head-Gordon, M.; Pople, J. A.; Frisch, M. J. MP2 Energy
Evaluation by Direct Methods. Chem. Phys. Lett. 1988, 153, 503−506.
(2) Purvis, G. D.; Bartlett, R. J. A Full Coupled-cluster Singles and
Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys.
1982, 76, 1910−1918.
(3) Kohn, W.; Sham, L. J. Self-Consistent Equations Including
Exchange andCorrelation Effects. Phys. Rev. 1965, 140, A1133−A1138.
(4) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.
Development and Use of Quantum Mechanical Molecular Models. 76.
AM1: ANewGeneral PurposeQuantumMechanicalMolecularModel.
J. Am. Chem. Soc. 1985, 107, 3902−3909.
(5) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.;
Frauenheim, Th.; Suhai, S.; Seifert, G. Self-Consistent-Charge Density-

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Perspective

https://doi.org/10.1021/acs.jpclett.1c01357
J. Phys. Chem. Lett. 2021, 12, 6227−6243

6240

https://doi.org/10.1016/0009-2614(88)85250-3
https://doi.org/10.1016/0009-2614(88)85250-3
https://doi.org/10.1063/1.443164
https://doi.org/10.1063/1.443164
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1021/ja00299a024?ref=pdf
https://doi.org/10.1021/ja00299a024?ref=pdf
https://doi.org/10.1103/PhysRevB.58.7260
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c01357?rel=cite-as&ref=PDF&jav=VoR


Functional Tight-Binding Method for Simulations of Complex
Materials Properties. Phys. Rev. B: Condens. Matter Mater. Phys. 1998,
58, 7260−7268.
(6) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A.
ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A
2001, 105, 9396−9409.
(7) Zubatiuk, T.; Isayev, O. Development of Multimodal Machine
Learning Potentials: Toward a Physics-Aware Artificial Intelligence.
Acc. Chem. Res. 2021, 54, 1575−1585.
(8) Ko, T. W.; Finkler, J. A.; Goedecker, S.; Behler, J. General-Purpose
Machine Learning Potentials Capturing Nonlocal Charge Transfer.Acc.
Chem. Res. 2021, 54, 808−817.
(9) Dral, P. O. QuantumChemistry in the Age ofMachine Learning. J.
Phys. Chem. Lett. 2020, 11, 2336−2347.
(10) Koch, W.; Bonfanti, M.; Eisenbrandt, P.; Nandi, A.; Fu, B.;
Bowman, J.; Tannor, D.; Burghardt, I. Two-Layer Gaussian-Based
MCTDH Study of the S1 ← S0 Vibronic Absorption Spectrum of
Formaldehyde Using Multiplicative Neural Network Potentials. J.
Chem. Phys. 2019, 151, 064121.
(11)Westermayr, J.; Faber, F. A.; Christensen, A. S.; von Lilienfeld, O.
A.; Marquetand, P. Neural Networks and Kernel Ridge Regression for
Excited States Dynamics of CH2NH2

+: From Single-State to Multi-
State Representations and Multi-Property Machine Learning Models.
Machine Learning: Science and Technology 2020, 1, 025009.
(12) Mazhnik, E.; Oganov, A. R. Application of Machine Learning
Methods for Predicting New Superhard Materials. J. Appl. Phys. 2020,
128, 075102.
(13) Jha, D.; Ward, L.; Paul, A.; Liao, W.; Choudhary, A.; Wolverton,
C.; Agrawal, A. ElemNet : Deep Learning the Chemistry of Materials
from Only Elemental Composition. Sci. Rep. 2018, 8, 17593.
(14) Jørgensen, P. B.; Schmidt, M. N.; Winther, O. Deep Generative
Models for Molecular Science. Mol. Inf. 2018, 37, 1700133.
(15) Popova, M.; Isayev, O.; Tropsha, A. Deep Reinforcement
Learning for de Novo Drug Design. Sci. Adv. 2018, 4, eaap7885.
(16) Degiacomi, M. T. Coupling Molecular Dynamics and Deep
Learning to Mine Protein Conformational Space. Structure 2019, 27,
1034−1040.e3.
(17) Ghosh, K.; Stuke, A.; Todorovic,́ M.; Jørgensen, P. B.; Schmidt,
M. N.; Vehtari, A.; Rinke, P. Deep Learning Spectroscopy: Neural
Networks for Molecular Excitation Spectra. Adv. Sci. 2019, 6, 1801367.
(18) Matsuzaka, Y.; Uesawa, Y. Optimization of a Deep-Learning
Method Based on the Classification of Images Generated by
Parameterized Deep Snap a Novel Molecular-Image-Input Technique
for Quantitative Structure−Activity Relationship (QSAR) Analysis.
Front. Bioeng. Biotechnol. 2019, 7, 65.
(19) Cova, T. F. G. G.; Pais, A. A. C. C. Deep Learning for Deep
Chemistry: Optimizing the Prediction of Chemical Patterns. Front.
Chem. 2019, 7, 809.
(20) Wood, M. A.; Thompson, A. P. Extending the Accuracy of the
SNAP Interatomic Potential Form. J. Chem. Phys. 2018, 148, 241721.
(21) Novikov, I. S.; Gubaev, K.; Podryabinkin, E. V.; Shapeev, A. V.
The MLIP Package: Moment Tensor Potentials with MPI and Active
Learning. Mach. Learn.: Sci. Technol. 2021, 2, 025002.
(22) Zhai, H.; Alexandrova, A. N. Ensemble-Average Representation
of Pt Clusters in Conditions of Catalysis Accessed through GPU
Accelerated Deep Neural Network Fitting Global Optimization. J.
Chem. Theory Comput. 2016, 12, 6213−6226.
(23) Zhou, G.; Chu, W.; Prezhdo, O. V. Structural Deformation
Controls Charge Losses in MAPbI3: Unsupervised Machine Learning
of Nonadiabatic Molecular Dynamics. ACS Energy Lett. 2020, 5, 1930−
1938.
(24) Prezhdo, O. V. Advancing Physical Chemistry with Machine
Learning. J. Phys. Chem. Lett. 2020, 11, 9656−9658.
(25) Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Gaussian
Approximation Potentials: The Accuracy of Quantum Mechanics,
without the Electrons. Phys. Rev. Lett. 2010, 104, 136403.
(26) Rosenbrock, C. W.; Homer, E. R.; Csányi, G.; Hart, G. L. W.
Discovering the Building Blocks of Atomic Systems Using Machine

Learning: Application to Grain Boundaries. npj Comput. Mater. 2017, 3,
29.
(27) Ferré, G.; Haut, T.; Barros, K. Learning Molecular Energies
Using Localized Graph Kernels. J. Chem. Phys. 2017, 146, 114107.
(28) Grisafi, A.; Wilkins, D. M.; Csányi, G.; Ceriotti, M. Symmetry-
Adapted Machine Learning for Tensorial Properties of Atomistic
Systems. Phys. Rev. Lett. 2018, 120, 036002.
(29) Bartók, A. P.; Csányi, G. Gaussian Approximation Potentials: A
Brief Tutorial Introduction. Int. J. Quantum Chem. 2015, 115, 1051−
1057.
(30) Shapeev, A. V. Moment Tensor Potentials: A Class of
Systematically Improvable Interatomic Potentials. Multiscale Model.
Simul. 2016, 14, 1153−1173.
(31) Thompson, A. P.; Swiler, L. P.; Trott, C. R.; Foiles, S. M.; Tucker,
G. J. Spectral Neighbor Analysis Method for Automated Generation of
Quantum-Accurate Interatomic Potentials. J. Comput. Phys. 2015, 285,
316−330.
(32) Allinger, N. L.; Yuh, Y. H.; Lii, J. H. Molecular Mechanics. The
MM3 Force Field for Hydrocarbons. 1. J. Am. Chem. Soc. 1989, 111,
8551−8566.
(33) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A
Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990, 94,
8897−8909.
(34) Behler, J.; Parrinello, M. Generalized Neural-Network
Representation of High-Dimensional Potential-Energy Surfaces. Phys.
Rev. Lett. 2007, 98, 146401.
(35) Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan,
G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. arXiv
2019, 1912.01703.
(36) Griewank, A. On Automatic Differentiation. In Mathematical
Programming: Recent Developments and Applications; Kluwer Academic
Publishers: Boston, 1989; pp 83−108.
(37) Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT
Press: Cambridge, MA, 2016.
(38) Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.;
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