
LOCALIZED OPTICAL EXCITATIONS AND TWO-EXCITON
SPECTROSCOPY OF PHENYLACETYLENE DENDRIMERS

V. CHERNYAK, E.Y. POLIAKOV, S. TRETIAK, S. MUKAMEL
Department of Chemistry, University of Rochester, Rochester, New York 14627

ABSTRACT

The one- and two-exciton manifolds of conjugated dendrimers possessing fractal geometries
are studied using the Frenkel exciton model. Two-photon spectra can be used to determine
both the magnitude and the sign of short-range coupling among segments. Self-similarity
and the high degree of symmetry make it possible to compute the one-exciton states and the
optical response with reduced numerical effort that scales linearly rather than exponentially
with the number of generations. The third-order optical response and exciton scattering ma-
trix are expressed in compact forms using irreducible representation of optical excitations,
totally avoiding the expensive explicit calculation of two-exciton eigenstates.

INTRODUCTION

In this article we study the linear and nonlinear optical excitations of conjugated pheny-
lacetylene dendrimers which form tree-like structures by connecting phenylacetylene oligomer
segments at the meta-positions [1-3]. These supramolecules have been synthesized in a search
for artificial antenna systems that mimic biological energy transfer processes [1, 4-8]. The
first five members of the compact family which has the same linear unit in all generations
and constitutes the subject of this study are shown in Fig. 1. Using the notation of Ref. [9],
we denote the dendrimer with l generations by Dl.
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Figure 1: Structures of the compact phenylacetylene dendrimers family made of the same
linear building unit.

Self-similar geometry leads to unusual transport and optical properties in these Cayley
tree or “Bethe lattice” structures [2-11]. Application of quantum chemistry methods to
calculate the electronic structure of giant molecules is limited by computational power to
small systems [12, 13]. The theoretical investigation is complicated by the delocalized nature
of electronic excitations, strong electron correlations, and vibronic coupling [12, 13]. The
problem is simplified considerably when a molecule can be divided into a set of chromophores
which are well separated in space, and their interactions are purely Coulombic. Electron



exchange is then negligible, each chromophore retains its own electrons, and the system may
be described using the Frenkel exciton Hamiltonian [14, 15].

It has been shown in [16] that optical excitations in these dendrimers do not involve charge
separation between different segments. This implies that optical excitations are localized in
the sense that the relative motion of electrons and holes is restricted to a single segment.
However, the center of mass motion of electron-hole pairs can still be delocalized across the
entire molecule. This localization allows to describe the optical response of the dendrimer
using the Frenkel (rather than charge transfer) exciton Hamiltonian [14, 15, 17]:

H =
∑
n̄

Ωn̄B
†
n̄Bn̄ +

∑
n̄6=m̄

Jn̄m̄B
†
m̄Bn̄. (1)

Each segment is modeled as a two-level chromophore (the ground and excited states of a
single acetylene chain) [9]. Bm̄ (B†

m̄) are the annihilation (creation) operator of an excitation
localized on the m̄-th chromophore. They satisfy the commutation relations, [Bn̄, B

†
m̄] =

δn̄m̄(1 − 2B†
m̄Bm̄) and [Bn̄, Bm̄] = [B†

n̄, B
†
m̄] = (B†

m̄)2 = (Bm̄)2 = 0. The parameters of
the Frenkel exciton Hamiltonian [Eq. (1)] have been computed using electronic structure
calculations for D1 [16]. The Coulomb coupling between the chromophores described by Jm̄n̄

leads to delocalization of energy due to the center of mass motion of the Frenkel excitons [9].
The structure of Frenkel excitons is very different for the compact and extended families

of dendrimers where the linear segment length varies from generation to generation, which
leads to a substantial difference in optical properties. In extended dendrimers, the segment
length increases towards the center. This implies that the transition frequencies Ωn̄ of the
effective chromophores are the same only within the same generation and decrease towards
the center forming an energy funnel. Since the differences between the transition frequen-
cies in different generations are in the range 800-3200 cm−1 whereas the Coulomb coupling
J ∼ 70 cm−1 [9], the excitons in extended dendrimers can only be delocalized within a given
generation. In compact dendrimers the linear units are identical and, therefore, the excitons
can be delocalized over the entire molecule. This implies that high-resolution optical spec-
tra (i.e. with resolution higher than J) are much richer in the compact family. This has
been our motivation for studying the high-resolution linear absorption spectra of compact
dendrimers [9]. In this manuscript we extend this study to nonlinear optical spectroscopy.

Direct computation of the linear response of dendrimers constitutes a complicated task
even for the Frenkel exciton model since the number of chromophores N scales exponentially
with the number of generations l. Utilizing the high symmetry, the problem of the linear
response has been reduced to the diagonalization of up to l×l matrices [9]. Utilizing the sym-
metry, the computation of two-exciton states involves the diagonalization of l3 × l3 matrices.
In this paper we use an alternative approach and express the signal in terms of the frequency
dependent exciton scattering matrix Γ̄m̄n̄(ω) [17, 18]. This reduces the problem to inverting
l× l matrices. The paper is organized as follows. In the next section we give a brief survey of
the Frenkel exciton model for dendrimers and the classification of its one-exciton states [9].
In the following section we compute the two-photon nonlinear spectra. In the last section
we give a brief summary of the results. Details of the derivations are given in the Appendices.

FRENKEL EXCITON MODEL AND ONE-EXCITON STATES IN COMPACT
DENDRIMERS

Each generation is formed by a collection of phenylacetylene units separated by a fixed
number of meta-conjugations. We consider the linear segment as a chromophore and only



retain the strongest Coulomb interactions represented by the nearest neighbor couplings,
i.e. coupling between linear segments connected through a single meta-conjugation. The
effective aggregate with the dual Bethe lattice geometry is shown in Fig. 2. The set of

Figure 2: Dual Bethe lattice with triangular cycles of nearest-neighbor interactions.

chromophores is denoted by Xl, individual chromophores are labeled by Roman index with
an overbar, m̄, and one-exciton eigenstates by overrbared Greek indices, e.g. ᾱ. Ωn̄ represents
the electronic transition energy of the n̄-th chromophore. All chromophores have the same
transition frequency Ωn̄ = Ω. Nearest neighbor coupling constants have the same magnitude
|J | = 68 cm−1. Finding their signs is a delicate issue described in [9]. The number of
chromophores in a generation scales with generation number j as

Nj = 3 · 2j−1. (2)

The total number of chromophores in Dl is N =
∑l

j=1Nj = 3(2l − 1).
Below we survey the properties of one exciton states which also form the basis for comput-

ing the third-order nonlinear signal and the two-exciton states. The structure and dynamics
of these states provides a sensitive probe for the coupling pattern and connectivity of den-
drimers. Using the strong symmetry and decomposition of the entire one-exciton space
discussed in Appendices B and C of [9], the excitons can be partitioned into two classes:
antisymmetric and symmetric.

An antisymmetric exciton (Fig. 3, left panel) is characterized by its origin, the chro-
mophore where the exciton starts, m̄, and the energy quantum number, α. For each m̄ ∈ Xl,
|m̄| denotes the generation number to which m̄ belongs. We note that |m̄| 6= l, so that
α = 1, 2, ..., l − |m̄|. The wavefunction of an exciton φm̄α which originates at m̄ is repre-
sented in Fig. 3 where j = l − |m̄|. All wavefunctions φm̄α(n̄) which originate in m̄ are
nonzero for n̄ which belong to the branches which start at m̄. As shown in the Figure,
a wavefunction φm̄α is determined by j = l − |m̄| numbers φ(j)

α (1), ..., φ(j)
α (j). The coeffi-

cients φ(j)
α (1), ..., φ(j)

α (j) satisfy the Schrödinger equations for one-exciton states [Eq. (A1) in
Ref. [9]].
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Figure 3: Left panel: The antisymmetric exciton of length j. The exciton wavefunction φαm̄

is represented by j = l − |m̄| nonzero numbers φ(j)(1), .., φ(j)(j) (the superscript of exciton
length (j) and energy quantum number α are dropped). Right panel: Symmetric exciton
and the representation of its wavefunction for the D3 molecule. (The subscript for qt and
index α are dropped.)

The coefficients φ(j)
α (1), ..., φ(j)

α (j) can be expressed in terms of the wavefunctions of an
effective linear chain of length j with nearest-neighbor hopping, ψ(j)

α (i), [see Eq.(A6) in [9]]

φ(j)
α (i) = ψ(j)

α (i)/
√

2i. (3)

We shall refer to excitons φm̄α with |m̄| = l − j as excitons of length j. Since an exciton of
length j with a given quantum number α (α = 1, 2, ...j) can originate at any chromophore
m̄ with |m̄| = l− j we have altogether 3 · 2l−j−1 excitons with energy ε(j)α . This corresponds
to the number of chromophores in the l − j generation [see Eq. (2)]. The total number of
excitons of length j is therefore 3 · 2l−j−1j where the last j factor is related to the quantum
number α and gives the number of distinct excitons of length j.

The symmetric excitons which have fixed length l and consist of three branches are pre-
sented in the right panel of Fig. 3. Each exciton wavefunction is determined by the auxiliary
wavefunctions φ̃(t)

α (1), ..., φ̃(t)
α (j). These excitons are labeled by the quantum numbers

qt = ei2π(t−1)/3, t = 1, 2, 3, (4)

with energies εα,t, t = 1, 2, 3, and α = 1, 2, ..., l. For each α, there are therefore three
symmetric excitons, and the total number of excitons is 3l. The auxiliary wavefunctions φ̃(t)

α

scale in the various branches as (1, qt, q
2
t ). They can be also mapped onto the effective linear

chain wavefunctions, ψ̃(t)
α (i), [see Eqs. (A2) and (A6) in Ref. [9]]:

φ̃(t)
α (i) = ψ̃(t)

α (i)/
√

3 · 2i−1. (5)



Eqs. (3) and (5) map the one-exciton states in a compact dendrimer onto one-exciton
states of effective linear chains with nearest neighbor coupling.

THE FOUR-WAVE MIXING SIGNAL: THIRD ORDER SUSCEPTIBILITY
AND EXCITON SCATTERING

Frequency-domain four-wave mixing signal is described by the third-order susceptibility
χ̂(3) [17, 18]:

χ̂(3)(−ωs;ω1, ω2, ω3) =
1

6

∑
perm

∑
m̄īj̄k̄

µm̄µīµj̄µk̄×
∑
n̄l̄

Gm̄n̄(ωs)Gl̄̄i(ω1)Gl̄j̄(ω2)G
†
k̄n̄

(−ω3)Γ̄n̄l̄(ω1 + ω2) + c.c., (6)

where perm denotes the six permutations of pairs (µi, ωi) for i = 1-3, c.c. stands for complex
conjugation, and µm̄ denotes the transition dipole of the m-th chromophore. G denotes the
one-exciton Green function

Gm̄n̄(ω) =
∑
ᾱ

φᾱ(m̄)φ∗
ᾱ(n̄)

ω − εᾱ + iγ
, (7)

where γ is the exciton dephasing rate.
The two-exciton information is contained in the two-exciton scattering matrix, Γ̄m̄n̄, which

has the form:
Γ̄m̄n̄(ω) = −2[F (ω)−1]m̄n̄. (8)

Here F (ω) is the two-exciton Green function in a reference system where the excitons are
represented by non-interacting bosons. It is given by the convolution of two one-exciton
Green’s functions [17, 20]:

Fm̄n̄(ω) =
∫ ∞

−∞
dω′

2πi
Gm̄n̄(ω′)Gm̄n̄(ω − ω′). (9)

Upon the substitution of Eq. (7) into Eq. (9), the matrix elements Fm̄n̄ are expressed in
terms of one-exciton wavefunctions:

Fm̄n̄(ω) =
∑
ᾱ,β̄

φᾱ(m̄)φβ̄(m̄)φ∗
ᾱ(n̄)φ∗̄

β(n̄)

ω − εᾱ − εβ̄ + 2iγ
. (10)

We consider a two-color heterodyne detected four-wave mixing signal generated by three
incoming beams in the direction ks = k1 + k2 − k3 with ω3 = ω1. The signal is then given
by Imχ̂(3)(−ω2;ω1, ω2,−ω1). Making the rotating wave approximation, we obtain

S(ω1, ω2) ∝ Im
∑
m̄īj̄k̄

(µm̄ · ês)(µī · ê1)(µj̄ · ê2)(µk̄ · ê3)×
∑
n̄l̄

Gm̄n̄(ω2)Gl̄̄i(ω1)Gl̄j̄(ω2)G
†
k̄n̄

(ω1)Γ̄n̄l̄(ω1 + ω2). (11)

where ê1, ê2, ê3, and ês represent the unit vectors in the directions of the polarization of the
three incoming and heterodyne fields, respectively.



In order to focus on the two-exciton states and avoid any interference with one-exciton
states, we tune both frequencies ω1 and ω2 to be off-resonant with respect to the one-exciton
manifold, keeping their sum ω1 + ω2 resonant with the two-exciton states. This yields

S(ω1, ω2) ∝
∑
m̄,n̄

(µm̄ · ês)(µm̄ · ê3)(µn̄ · ê1)(µn̄ · ê2)Im Γ̄m̄n̄(ω1 + ω2). (12)

For the particular choice of the polarizations: ês = ê2, ê1 = ê3, Eq. (12) yields the two-
color pump-probe signal. Eq. (12) represents the signal as a convolution of the scattering
matrix Γ̄m̄n̄ which represents the internal geometry of the molecule, e.g. the connectivity,
the Coulomb coupling strength and the factor Mm̄n̄ =

∑
m̄,n̄(µm̄ · ês)(µm̄ · ê3)(µn̄ · ê1)(µn̄ · ê2)

which is related to molecular geometry, i.e. its three-dimensional shape which involves the
relative dipole orientations becomes extremely complicated as the number of generations is
increased. The signal’s dependence on geometry can be eliminated by choosing ês = ê3,
ê1 = ê2, and averaging over all possible orientations of ê3 and ê2 which yields

S ∝ µ4Im
∑
m̄,n̄

Γ̄m̄n̄(ω1 + ω2), (13)

where µ is the chromophore transition dipole.
In appendix A, we express the two-exciton scattering matrix Γ̄m̄n̄ in terms of one-exciton

wavefunctions. We have decomposed the one-exciton space of states Wl into the sum of
irreducible representations of the dendrimer group of symmetry Gl [9]. (Its calculation only
requires inverting l × l matrices.)

Setting |µ| = 1, the third-order nonlinear signal, S(ω1, ω2), is plotted in Fig. 4 as a
function of the sum-frequency detuning from two-exciton resonance, ∆ω = ω1 + ω2 − 2Ω
with γ = 8 cm−1.

These spectra consist of several well-separated resonances, and the number of peaks grows
for higher generations. The spectrum of a given generation contains all the features of lower
generations, which are shifted as the number of generations l is increased. This can be
rationalized using the following arguments. The structure of single-exciton states described
above, namely the property that an exciton starts at a certain chromophore and spreads
towards the boundary implies that the antisymmetric excitons which play the major role in
optical signals do not change as the number of generations is increased. Consequently, new
features are added to the linear absorption spectra as l is increased whereas previous features
remain unchanged [9]. The situation with two-exciton states is different since excitons of
different lengths interact by means of Pauli exclusion. The resulting spectral shifts are small
since the interaction is weak. The spectra also broaden with l. This can be rationalized
using the variational principle since the space of two-exciton states of Dl can be considered
as an extension of that of D(l − 1).

Increasing the number of generations further leads to the eventual saturation of the
nonlinear signal: The spectra of D5 and D6 and higher Dl (not shown) are very similar.
Saturation of the two-photon spectrum is the consequence of self-similarity, as was previously
demonstrated for linear absorption [9]. We further note that the spectrum is asymmetric.
The highest peaks are blue-shifted (∆ω > 0) as in J-aggregates [19]. This can be used to
determine the sign of J . The two-exciton band extends from −7|J | to 3.5|J | with band-
width 10.5|J | ≈ 700 cm−1. This estimate can be used to evaluate the magnitude of the
coupling constant. For infinite dendrimers, the one-exciton band extends from −J(1+2

√
2)

to J(2
√

2−1), giving a bandwidth ∼ 5.8|J |. The two-exciton bandwidth, 10.5|J |, is narrower
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Figure 4: Four-wave mixing response signal from D2-D6 as a function of sum pump and
signal frequency detuning from two-exciton resonance.

than twice the one-exciton bandwidth, 11.6|J |. This can be rationalized using the variational
principle. The space of two-exciton states in the model of coupled two-level chromophores
can be considered as a subspace of two-particle states in a system of non-interacting bosons
obtained by excluding the double excitations on single chromophores. According to the
variational principle, the two-exciton band is narrower than the two-boson band, which is
precisely twice the one-exciton bandwidth.

SUMMARY

We have studied the two-color four-wave mixing signal in compact conjugated phenylacety-
lene dendrimers using the Frenkel exciton model. This model which usually applied for
molecular aggregates may be used to describe optical excitations in dendrimers due to the
localization of the relative motion of electrons and holes on the linear segments. This im-
plies that as far as their optical properties are concerned, dendrimers behave like molecular



aggregates rather than supermolecules. We have demonstrated that after a proper averaging
over the orientations of the beam polarizations in a two-color four-wave mixing experiment,
one obtains a signal which does not depend on the molecular three-dimensional geometry;
The signal only reflects the connectivity and the Coulomb coupling. The scattering matrix
approach to optical nonlinearities in Frenkel exciton systems [17, 18, 20] combined with uti-
lization of the high symmetry turns out to be extremely powerful for computing nonlinear
optical signals in dendrimers by considerably reducing the numerical effort. The effective
size grows linearly rather than exponentially with l.
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APPENDIX A: THE TWO-EXCITON SCATTERING MATRIX IN THE UNIT
REPRESENTATION SUBSPACE

In this Appendix we show how the high symmetry of a dendrimer can be used to compute
the exciton scattering matrix Γ̄m̄n̄(ω). The most time consuming part of the computation is
inverting the matrix Fm̄n̄(ω) which represents an operator F (ω) acting on the one-exciton
space Wl with dimension N = 3(2l − 1). The problem can be substantially simplified by
noting that F (ω) is obviously a symmetric operator with respect to symmetry group Gl.
Decomposing the space Wl into a direct sum of irreducible representations (this has been
carried out in [9]), Wl = ⊕l−1

n=1nVn ⊕ lṼ1 ⊕ lṼ2 ⊕ lṼ3, we can apply the Schur lemma to
F (ω) which states that F (ω) does not have matrix elements between different irreducible
representations whereas it can be described by an effective n × n matrix in the space nVn

and by l × l matrices in the spaces lṼ1, lṼ2, and lṼ3 (see [9] for the details). The operator
F (ω) should therefore be projected into the spaces of irreducible representations and the
corresponding n×n and l×l matrices should be inverted which yields the scattering operator
Γ̄(ω). In the case of the signal given by Eq. (13) it is easy to show that only the component
of Γ̄(ω) which acts in lṼ1 is involved. lṼ1 constitutes l replicas of the one-dimensional unit

representation. They are represented by l vectors vi, i = 1, ..., l in Wl with components v
(m̄)
i

given by

v
(m̄)
i =

1√
Ni

δ|m̄|,i, (14)

where Ni is the number of chromophores in the i-th generation given by Eq. (2).
The matrix components of F in the original basis and in the basis set vi are naturally

related by
Fij =

∑
m̄,n̄

v
(m̄)
i Fm̄n̄v

(n̄)∗
j . (15)

Upon substituting Eq. (10) into Eq. (15) we obtain that

Fij(ω) =
∑
m̄,n̄

∑
ᾱ,β̄

v
(m̄)
i φᾱ(m̄)φβ̄(m̄)[φᾱ(n̄)φβ̄(n̄)v

(n̄)
j ]∗

ω − εᾱ − εβ̄ + 2iγ
. (16)

As shown in Appendix B, it is possible to separate Fij into two contributions

Fij = F̄ij + F̃ij , (17)



where F̄ij is obtained from the summation over antisymmetric exciton states in Eq. (35),
while F̃ij is given by the contribution of the symmetric exciton states in Eq. (36).

We first consider the symmetric exciton contributions. By using Eqs. (5) and (14) the

sum
∑

m̄ v
(j)
m̄ φ̃(t)

α (m̄)φ̃
(t′)
β (m̄) can be written in terms of wavefunctions of a linear chain:

∑
m̄

v
(m̄)
i φ̃(t)

α (m̄)φ̃
(t′)
β (m̄) =

∑
m̄i∈|̄i|

φ̃(t)
α (m̄i)φ̃

(t′)
β (m̄i)/Ni = ψ̃(t)

α (i)ψ̃
(t′)
β (i)

1 + qtqt′ + q2
t q

2
t′

3
√

2i−1
, (18)

where we use the fact that wavefunctions ψ̃(t)
α (i) of different branches for same symmetric

exciton state scale to each other as (1, qt, q
2
t ).

Using Eq. (18), Eq. (35) assumes the form:

F̃ij(ω) =
1

27
√

2i+j−2

l∑
α=1

l∑
β=1

3∑
t=1

3∑
t′=1

ψ̃(t)
α (i)ψ̃

(t′)
β (i)[ψ̃(t)

α (j)ψ̃
(t′)
β (j)]∗

ω − εα,t − εβ,t′ + 2iγ
|1 + qtqt′ + q2

t q
2
t′ |2. (19)

As seen from (4) 1 + qtqt′ + q2
t q

2
t′ 6= 0, iff qtqt′ ≡ 1, while εα,3 = εα,2 (compare Eqs. (A1) and

(A2) in [9]). We use these properties in Eq. (19), to finally obtain

F̃ij(ω) =
1

3
√

2i+j−2

l∑
α=1

l∑
β=1

2∑
t=1

tψ̃(t)
α (i)ψ̃

(t)
β (i)[ψ̃(t)

α (j)ψ̃
(t)
β (j)]∗

ω − εα,t − εβ,t + 2iγ
. (20)

We now consider the antisymmetric exciton contribution [Eq. (36)]. To find out which

excitons contribute, let us first consider the auxiliary sum
∑

s

∑
ᾱ,β̄

∑
m̄ v

(m̄)
i φ

(s)
ᾱ (m̄)φ

(s)

β̄
(m̄).

Since the vector v
(m̄)
i has non-zero components only for chromophores that belong to the i-

th generation (chromophores with index m̄i in (14)), only the antisymmetric excitons which
start earlier than the i-th generation, contribute to the sum. We next calculate the total
number of different contributing exciton states. As early discussed, there are 3 · 2l−s−1

one-exciton states within the exciton of length s. Making use of (3) and (14), we obtain

∑
s

∑
ᾱ,β̄

∑
m̄

v
(m̄)
i φᾱ(m̄)φβ̄(m̄) =

√
3/2i−1

i−1∑
s=1

l−s∑
α,β=1

2s−1ψ(l−s)
α (i− s)ψ

(l−s)
β (i− s). (21)

We now turn to the matrix element F̄ij and look for the contribution of exciton states
similar to (21). We assume i ≥ j, but as it will follow from (22), F̄ij = F̄ji. Although
Eq. (36) contains a product of four wavefunctions (as opposed to two in (21)), it is obvious
that the excitons contributing to F̄ij must belong to a generation lower or equal to i − 1
(otherwise, the two wavefunctions are exactly zero for any α and β in (16)). It follows further

from the definition (14) of the vector v
(m̄)
i that only the wavefunctions of the i-th generation

contribute to F̄ij . This fixes the length s for the contributing excitons: It must start from
the i-th generation. s determines the set of allowed values for both quantum numbers α and
β because both φ(s)

α (m̄) and φ
(s)
β (m̄) are present in Eq. (36). Using this argument we obtain

s = s′, resulting in an expression for F̄ij, which is very similar to (21):

F̄ij(ω) =
1√

2i+j−2

i−1∑
s=1

l−s∑
α,β=1

2s−1ψ(l−s)
α (i− s)ψ

(l−s)
β (i− s)[ψ(l−s)

α (j − s)ψ
(l−s)
β (j − s)]∗

ω − ε
(l−s)
α − ε

(l−s)
β + 2iγ

, i ≥ j,

(22)
where we also used the vector norm (14).



Both eigenvalues and eigenvectors of the excitons are real (Eqs. (A1) and (A2) in [9])
correspond to the real symmetric tridiagonal matrices.). Using this in Eqs. (20) and (22),
we rewrite Eq. (17) as

Fji(ω) = Fij(ω) =
1√

2i+j−2


1

3

l∑
α=1

l∑
β=1

2∑
t=1

tψ̃(t)
α (i)ψ̃

(t)
β (i)ψ̃(t)

α (j)ψ̃
(t)
β (j)

ω − εα,t − εβ,t + 2iγ
+

i−1∑
s=1

l−s∑
α,β=1

2s−1ψ(l−s)
α (i− s)ψ

(l−s)
β (i− s)ψ(l−s)

α (j − s)ψ
(l−s)
β (j − s)

ω − ε
(l−s)
α − ε

(l−s)
β + 2iγ


 . (23)

As can be seen from Eq. (23), the elements of symmetric matrix can be represented as
Fij = (1/

√
2i−1)fij(1/

√
2j−1), with

fji(ω) = fij(ω) =
1

3

l∑
α=1

l∑
β=1

2∑
t=1

tψ̃(t)
α (i)ψ̃

(t)
β (i)ψ̃(t)

α (j)ψ̃
(t)
β (j)

ω − εα,t − εβ,t + 2iγ
+

i−1∑
s=1

l−s∑
α,β=1

2s−1ψ(l−s)
α (i− s)ψ

(l−s)
β (i− s)ψ(l−s)

α (j − s)ψ
(l−s)
β (j − s)

ω − ε
(l−s)
α − ε

(l−s)
β + 2iγ

. (24)

In a matrix form, we write
F = AfA, aij = δij/

√
2i−1. (25)

The matrix A is diagonal, so that (a−1)ij = 1/aij =
√

2i−1δij . The back substitution provides
F−1 = A−1f−1A−1, or

F−1
ij =

√
2i−1f−1

ij

√
2j−1. (26)

The scattering matrix Γ̄m̄n̄(ω) is given in terms of the two-exciton Green’s function (8)
with matrix elements (26). The relation between the matrix elements of the exciton scatter-
ing matrix in the original basis, Γ̄m̄n̄, and in the basis set of vi [Eq. (14)], Γ̄ij , is given by an
expression, which is similar to Eq. (15):

Γ̄m̄n̄ =
l∑

i,j=1

v
(m)
i Γ̄ijv

(n)∗
j . (27)

Combining Eqs. (8) and (26), we express the two-exciton scattering matrix in terms of
single-exciton wavefunctions and their energies

Γ̄ij(ω) = 3 · 2i+j−1Im[f−1
ij (ω)]. (28)

Making use of Eqs. (28) in (13), and (27) we obtain the final expression for the nonlinear
signal

S(ω2, ω1) ∝ −(3/2)µ4
l∑

i,j=1

2i+jIm[f−1
ij (ω1 + ω2)], (29)

where the matrix elements fij are expressed using the one-exciton states [Eq. (24)].

APPENDIX B: EXCITON CONTRIBUTIONS TO THE F MATRIX

In this section we separate the contribution from the symmetric and antisymmetric excitons
to the two-exciton matrix elements Fij and derive Eq. (17).



We first rewrite Eq. (16) in the following form

Fij(ω) =
∑
m̄n̄

v
(m̄)
i v

(n̄)∗
j

∑
β̄

φβ̄(m̄)φ∗̄
β(n̄)

∑
ᾱ

φᾱ(m̄)φ∗
ᾱ(n̄)

ω − εᾱ − εβ̄ + 2iγ
. (30)

The transformation from generalized excitonic states ᾱ to the symmetric excitons is

ᾱ→ (α, t), εᾱ → εα,t (31)

and to the antisymmetric excitons

ᾱ→ (α, s), s = 1, .., l − 1, εᾱ → ε(s)α , (32)

where the index s represents the length of an antisymmetric exciton, and t designates one
(out of three) types of symmetric excitons. Using Eqs. (31) and (32) in (30), we first obtain

Fij(ω) =
∑
m̄n̄

v
(m̄)
i v

(j)∗
n̄

∑
β̄

φβ̄(m̄)φ∗̄
β(n̄)

[ ∑
t,α

φ̃(t)
α (m̄)φ̃(t)∗

α (n̄)

ω − εα,t − εβ̄ + 2iγ
+

∑
s,α

φ(s)
α (m̄)φ(s)∗

α (n̄)

ω − ε
(s)
α − εβ̄ + 2iγ

]
. (33)

Applying rules (31) and (32) in Eq. (33) for states with β̄, we rewrite Eq. (16) as

Fij = F̄ij + F̃ij + 2ξij. (34)

In Eq. (34), F̄ij is given by the antisymmetric excitons

F̄ij =
l−1∑

s,s′=1

s∑
α=1

s′∑
β=1

∑
m̄ v

(m̄)
i φ(s)

α (m̄)φ
(s′)
β (m̄)

∑
n̄[v

(j)
n̄ φ(s)

α (n̄)φ
(s′)
β (n̄)]∗

ω − ε
(s)
α − ε

(s′)
β + 2iγ

, (35)

while the contribution of the symmetric excitons to the two-exciton Green’s function is

F̃ij =
3∑

t=1

3∑
t′=1

l∑
α=1

l∑
β=1

∑
m̄ v

(m̄)
i φ̃(t)

α (m̄)φ
(t′)
β (m̄)

∑
n̄[v

(j)
n̄ φ̃(t)

α (n̄)φ̃
(t′)
β (n̄)]∗

ω − εα,t − εβ,t′ + 2iγ
. (36)

The cross term formed by combination of symmetric and antisymmetric excitons,

ξij =
∑
t,α

∑
s,β

∑
m̄ v

(m̄)
i φ̃(t)

α (m̄)φ
(s)
β (m̄)

∑
n̄[v

(j)
n̄ φ̃(t)

α (n̄)φ
(s)
β (n̄)]∗

ω − εα,t − ε
(s)
β + 2iγ

, (37)

vanishes. To prove that, we consider the sum

∑
m̄

v
(m̄)
i φ̃(t)

α (m̄)φ
(s)
β (m̄) =

Ni∑
m̄i=1

φ̃(t)
α (m̄i)φ

(s)
β (m̄i)/

√
Ni ∀i, t, s. (38)

We break the summation (38) as
∑Ni

m̄i=1 =
∑Ni/2

m̄i=1 +
∑Ni

m̄i=Ni/2+1. As seen from Fig. 3, the
antisymmetric wavefunctions change sign upon rotation with respect to rotation the exciton
origin Am̄φ

(s)
β (m̄i) = −φ(s)

β (m̄i+Ni/2), for any chromophore that belongs to the left semiplane
formed by dividing the exciton plane by Am̄ axis, m̄i ≤ Ni/2. At the same time, the

symmetric wavefunctions do not change sign under such an operation, and Am̄φ̃
(t)
β (m̄i) =

φ̃
(t)
β (m̄i + Ni/2). Therefore,

∑Ni/2
m̄i=1 = −∑Ni

m̄i=Ni/2+1, the sum (38) vanishes, and Eqs. (34)
and (16) are equivalent.
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